RESEARCH REGARDING THE INFLUENCE OF GENOTYPE X EPOCH OF SOWING X DISTANCE BETWEEN ROWS ON SEEDS YIELD AT *RICINUS COMMUNIS* L. (CASTOR BEAN)

Bogdan MÎRZAN¹, Teodor ROBU¹, Oana MÎRZAN², Margareta NAIE², Maria BOSTAN²

e-mail:mirzanbogdan@yahoo.com

Abstract

The researches were organized in 2018-2019 at the Moldoveni Agricultural Society, Neamt County. Analyzing the influence of the distance between rows at castor bean, it results that at greater distances yield deficits are obtained, so when the plant nutrition area is increased, the branching is stronger and the yield obtained from the main raceme decreases, increasing instead the production of secondary racemes. The results obtained on average over the two years of experimentation show us that the highest production was obtained for the variant sown at 70 cm between rows (1460 kg / ha), which indicates that castor bean responds favorably at this distance. The average productions obtained in the analyzed period were directly influenced by the experienced technological factors. These varied in limits between 1036 kg / ha (Rivlas x the fourth epoch x 100 cm between rows) to 1650 kg / ha (Christian x the second epoch x 70 cm between rows).

Key words: yield, castor bean, technological factors

Castor bean (*Ricinus communis* L.) oil is distinct from other vegetable oils, mainly because it consists of up to 90% of a hydroxylated fatty acid called ricinoleic acid (Severino L.S. *et al*, 2012), and it has many applications in the chemical industry, including biodiesel production (Baldwin B.S., Cossar R.D., 2009).

The castor bean plant is tolerant to drought and adapted to many cropping conditions (Babita M. et al, 2010; Carvalho E.V. et al, 2010). The optimization of row spacing and in-row plant density is a simple procedure with a low cost but has a significant influence on yield (Severino L.S. et al, 2006a; Severino L.S. et al, 2006b; Severino L.S. et al, 2012) and is essential to maximize seed production (Cox W.J., Cherney J.H., 2011). A high plant density may result in overgrown plants (Carvalho E.V. et al, 2010) and subsequent lodging, whereas a low plant population may favor weed infestation, late flowering, long lateral branches, and wide stems, which impair mechanical harvesting (Lopes F.F.M. et al, 2008; Severino L.S. et al, 2006b; Severino L.S. et al, 2012). Light interception by plants strongly influences the crop yield when other environmental factors are favorable, and it is modified by the plant spatial distribution in a given area (Severino L.S. *et al*, 2006a; Severino L.S. *et al*, 2006b; Severino L.S. *et al*, 2012).

MATERIAL AND METHOD

A factorial experiment was organized in 2018-2019 at the Moldoveni Agricultural Society, Neamt County, using a subdivided plotsin three replications. The experiments aimed to identify the genotype with the highest adaptability to climatic conditions in the area of influence and establish the optimal time to sow and the distance between the rows.

Factor A: Genotype, with 4 graduations:

a1 – Dragon variety;

a2 - Rivlas variety;

a3 – Cristian variety;

a4 – Teleorman variety.

Factor B: Epoch of sowing, with 4 graduations:

b1 - sown in the first decade of April;

b2 - sown in the second decade of April;

b3 - sown in the third decade of April;

b4 - sown in the first decade of May.

Factor C: The nutrition space, with 3 graduations:

c1 - 50 cm between rows;

c2 - 70 cm between rows;

c3 - 100 cm between rows.

The obtained results were processed and

¹ "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, Iasi

² Secuieni Agricultural and Development Research Station, Neamt

interpreted statistically according to the method of analysis of variance.

Table 1

The influence of the interaction between genotype x sowing season x distance between rows on castor bean production average years

		bean production				
Variety	Epoch of	Distance between	Production	%	Diff.	Sign
	sowing	rows (cm)	(kg/ha)		(kg/ha)	
		50	1446	98.13	-28	
	1st epoch	70	1492	101.26	19	
		100	1371	93.09	-102	000
		50	1534	104.13	61	**
~	2nd epoch	70	1623	110.19	150	***
Dragon		100	1421	96.44	-53	0
	3rd epoch	50	1399	94.96	-74	00
		70	1488	101.03	15	
		100	1286	87.27	-188	000
		50	1249	84.76	-225	000
	4th epoch	70	1338	90.82	-135	000
		100	1135	77.06	-338	000
		50	1346	91.37	-127	000
	1st epoch	70	1392	94.49	-81	000
	•	100	1272	86.32	-202	000
		50	1434	97.36	-39	
	2dn epoch	70	1524	103.43	51	*
as		100	1321	89.67	-152	000
Rivlas		50	1299	88.20	-174	000
Щ	3rd epoch	70	1389	94.26	-85	000
		100	1186	80.50	-287	000
	4th epoch	50	1149	77.99	-324	000
		70	1238	84.06	-235	000
		100	1036	70.30	-438	000
	1st epoch	50	1472	99.94	-1	
		70	1518	103.07	45	*
		100	1398	94.90	-75	00
		50	1561	105.94	88	***
	2dn epoch	70	1650	112.00	177	***
Cristian	Zun opoon	100	1447	98.25	-26	
rist		50	1426	96.78	-48	0
ō	3rd epoch	70	1515	102.84	42	*
		100	1312	89.08	-161	000
	4th epoch	50	1275	86.57	-198	000
		70	1365	92.63	-109	000
		100	1162	78.88	-311	000
		50	1418	96.25	-55	00
	1st epoch	70	1464	99.38	-9	
		100	1344	91.21	-130	000
		50	1506	102.25	33	000
~	2dn epoch	70	1596	102.20	123	***
Teleorman		100	1393	94.56	-80	000
	3rd epoch	50	1393	93.09	-102	000
		70	1461	99.15	-102	000
		100	1258	85.39	-215	000
		50	1238	82.88	-215	
	445					000
	4th epoch	70	1310	88.95	-163	000
100			1108	75.19	-366	000
	Averaç	je	1373	100	Ct.	
		(kg/ha)	5%=41.33; 1			

RESULTS AND DISCUSSIONS

The average productions obtained in the analyzed period were directly influenced by the experienced technological factors. These varied in limits between 1036 kg/ha (Rivlas x 4th epoch of sowing x 100 cm between rows) to 1650 kg/ha (Christian x 2nd epoch of sowing x 70 cm between rows) (*table 1*).

The production increases obtained for the variants sown in the second epoch and at the distance of 70 cm between the rows were between 51 - 177 kg/ha, statistically assured and interpreted as significant and very significant (*table 2*).

On average, over the two years of experimentation, the average height of plants in the Dragon variety in the version sown in the first x 50

cm was 133 cm, but by increasing the distance between rows the height of the plant increases to 173 cm. Also for the Dragon variety, the average length of the main raceme ranged from 25.4 cm (4th epoch x 100 cm) to 39.9 cm (2nd epoch x 70 cm), the average number of capsules / plant was between 36 - 48 and the average number of seeds / plant varied between 109 - 144 (*table 2*).

During the experimented period, on average for the two years, it can be observed that the varieties Rivlas, Cristian and Teleorman obtained the highest number of capsules per plant in the variant sown in the second epoch x 70 cm (47, 52 and 55), and the lowest number of capsules / plant in the variant sown in the 4th epoch x 100 cm (35, 38 and 40) (*table 2*).

Table 2

				years				
	f	Distance	Plant	Main	Length		No	Nr.
Variety	lo r Digu	between	height	racem	of the	Branches	capsule	seeds
	ocl vvi	rows	(cm)	insert	main		/pl.	/
	Epoch of sowing	(cm)		height	raceme			pl
			100	(cm)	(cm)			
	1.04	50	133	79.8	29.1	0	44	132
	1st epoch	70	149	81.5	28.1	0	45	135
		100	163	81	27.6	2	42	126
	2nd epoch	50	153	78.5	29	0	46	137
-		70	164	89.3	39.9	0	48	144
Dragon		100	173	91.5	28.9	2	43	129
)ra(Oral	50	145	77	27.2	0	43	129
	3rd	70	155	82.1	30.8	0	45	136
	epoch	100	168	88.5	26.8	1	40	120
		50	140	73.5	25.7	0	39	117
	4th	70	149	76.4	26.6	0	42	125
	epoch	100	162	85.5	25.4	0	36	109
		50	136	86.3	24.6	0	42	127
	1st epoch	70	151	88.6	27	0	44	131
		100	166	93.4	25.9	1	41	122
	2nd epoch	50	153	88.6	28.6	0	45	135
		70	164	92.3	35.9	0	47	142
Rivlas		100	174	93.9	27.8	2	42	125
.≥	3rd	50	147	82.5	27.6	0	42	124
_		70	157	87.6	31.5	0	44	131
	epoch	100	170	91.3	25.4	0	38	115
	4th epoch	50	142	79.3	25.1	0	38	113
		70	151	73.6	31.8	0	41	121
		100	164	82.6	24.6	0	35	104
	1st epoch	50	143	66.2	29.2	0	47	140
		70	141	69	28.6	0	48	144
		100	170	71.7	25.8	1	45	134
	2nd epoch	50	142	70.2	29.7	0	49	147
ç		70	160	81	38.9	0	52	154
Cristian		100	170	84.9	26.7	1	46	137
Ŭ	3rd epoch	50	153	61.9	26	0	45	135
0		70	142	66.5	30.1	0	48	143
		100	158	75.3	23.9	0	38	113
	4th epoch	50	137	61.9	23.4	0	41	123
		70	145	69.4	28.2	0	43	130
μø		100	158	75.3	23.9	0	37	112
	1st	50	96	39.5	28.1	0	50	150

Biometric measurements performed during the growing season on experienced castor bean varieties, average

133

	epoch	70	105	41	27.1	0	50	149
		100	120	56.2	27.4	2	48	142
	2nd epoch	50	110	42.5	30.1	0	53	158
		70	121	63.9	30.4	0	55	166
		100	131	65.9	27.6	2	49	147
	3rd epoch	50	102	47.4	27.2	0	48	145
		70	112	58.9	29	0	51	154
		100	125	63.8	24.9	1	45	134
	4th epoch	50	97	46.5	24.6	0	42	126
		70	106	49.2	25.4	0	47	140
		100	120	56.5	18.6	0	40	120

CONCLUSIONS

Among the factors that led to the superiority of the variant sown at 70 cm between rows in the study period, we must mention the following: the possibility of mechanical tillage until advanced stages of vegetation without affecting the roots and foliar apparatus, creating access to sunlight at the lower stages of the leaves, earlier harvesting of the capsules and their uniform maturation.

Analyzing the influence of the distance between rows on castor bean, it results that at greater distances production deficits are obtained, so when the plant nutrition area is increased, the branching is stronger and the production obtained from the main raceme decreases, increasing instead the production of secondary racemes. The density must be set so as to greatly reduce the production of secondary racemes, which do not always reach maturity.

REFERENCES

- Babita M., Maheswari M., Rao L. M., Shanker A.K., Rao D.G., 2010 - Osmotic adjustment, drought tolerance and yield of castor bean (Ricinus communis L.) hybrids. Environmental and Experimental Botany, 69(3): 243-249.
- Baldwin B.S., Cossar R.D., 2009 Castor bean yield in response to planting date at four locations in the south-central United States. Industrial Crops and Products, 29(2-3): 316-319.

- Carvalho E.V., Sá C. H.A.C., COSTA J.L., Afférri F.,, Siebeneichler S.C., 2010 - Densidade de plantio em duas cultivares de mamona no Sul do Tocantins. Revista Ciência Agronômica, 41 (3): 387-392.
- **Cox W.J., Cherney J. H., 2011** *Growth and yield* responses of soybean to row spacing and seeding rate. Agronomy Journal, 3(1): 123-128.
- Lopes F. F. M., Beltrão N. E. M., Lopes Neto J. P., Pedroza J. P., 2008 - Crescimento inicial de genótipos de mamoneira com sementes submetidas ao envelhecimento acelerado. Revista Brasileira de Oleaginosas e Fibrosas, 12(1): 69-79.
- Severino L.S., Auld D.L., Baldanzl M., Cândido M.J.D., Chen G.; Crosby W., Tan D., He X., Lakshmamma P., Lavanya C., Machado O. L. T., Mielke T., Miller T. D., Morris J.B., Morse S. A., Navas A.A., Soares D.J., Sofiatti V., Wang M.L., Zanotto M.D., Zieler H.A., 2012 - Review on the challenges for increased production of castor bean. Agronomy Journal, 104(4): 853-880.
- Severino L. S., Coelho D.K., Moraes C.R.A., Gondim T.M.S., Vale L.S., 2006a - Otimização do espaçamento de plantio para a mamoneira cultivar BRS Nordestina. Revista Brasileira de Oleaginosas e Fibrosas, 10 (1-2): 993-999.
- Severino L.S., Moraes C.R.A., Gondim T.M.S., Cardoso G.D., Beltrão N.E.M., 2006b -Crescimento e produtividade da mamoneira influenciada por plantio em diferentes espaçamentos entre linhas. Revista Ciência Agronômica, 37 (1):50-54.