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Abstract 
 
The present paper, based on the common equation of hydraulics and on a selection of quantitative specifications from 
literature dealing with this subject, consists of a double-parabolic theoretical law referring to the vertical distribution of 
velocities in open channels. Then, based on this distribution law, algebraic expressions for the relative quota 
corresponding to the average velocity as well as for the assessment of the Coriolis and Boussinesq coefficients are 
deduced. For a concrete example of calculation, the algebraic relations deduced are verified using numerical methods. 
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Using the common equation of hydraulic 
calculations the average velocity in the active 
cross-section of a free surface stream in continuous 
flow can be calculated and the average velocity can 
also be estimated on one of the stream’s vertical. 

The Coriolis coefficient α and Boussinesq 
coefficient β interfere in the energy and impulse 
equations; they can be assessed if the velocity 
distribution on one vertical of the stream and/or on 
its entire active cross-sectional area are known. 

The velocity distribution can also facilitate 
the evaluation of other values, for example the 
drag of a solid object, local resistance induced by a 
singularity, and longitudinal and/or transverse 
hydrodynamic dispersion coefficients.  

Based on the common hydraulics equations 
and some quantitative specifications from the 
specialized literature, a double-parabolic 
theoretical law on the vertical distribution of 
velocities in open channels is defined.  

Later, starting from this distribution law, 
algebraic expression are deduced for the vertical 
stream and for the relative level corresponding to 
the average velocity, as well as for the evaluation 
of the α and β coefficients. For an example of a 
concrete calculation, all the newly deduced 
algebraic relations are verified using numerical 
methods. 
 

MATERIAL AND METHOD 
 

Referring to velocity distribution in a channel 
with a free surface, on the vertical with a water 

depth of h, some authors, surmise that due to 
friction with the atmospheric air the velocity at the 
top water-surface stream, vs, is inferior to the 
maximum velocity of flow, vmax, registered at the 
 zmax level – at  1 6 1 5 h  below the water 
surface – thus (Bartha I., 2004): 
 

 max max 4 5,5 6z z h  , max sv v  , 
 
with 1.29                                                        (1) 
where zmax represents the relative quota 
corresponding to velocity vmax. 

The velocity at the invert channel, vb, will be 
approximated using the friction velocity v*, 
(Mateescu C., 1993): 
 

*f hv v g R I                   (2) 
where g represents acceleration due to gravity,  R 
is the hydraulic radius, and Ih the hydraulic slope. 

The average velocity on a vertical stream of 
depth h can be estimated with the Chezy formula: 

 

  1 61h hV C R I n R R I     ,                   (3) 
   
where: C is Chezy’s coefficient, and n is the 
coefficient of roughness, referred to as Manning's 
roughness coefficient. 

Later on we will use the relative velocities at 
the bottom, fv , and at the surface, sv , and the 

maximum relative velocity. maxv , defined by the 
following relations:  
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max max; ;f f s sv v V v v V v v V     ,          (4)    

                            
From relations (4) and (1) it results that: 

max sv v   , with  1.29                (5) 
      

while from relations (4), (2) and (3) and (1), the 
result is: 
  

1 6
*fv v V n g R                                    (6)

                                    
RESULTS AND DISCUSSIONS 

 
Based on relations (1), (5) and (6) a double-

parabolic theoretical law on the vertical 
distribution of velocities in channels was 
determined.  

As practical applications of this distribution 
law for that particular vertical, algebraic 
expressions were inferred for the relative level 
corresponding to the average velocity medz  as well 
as for the evaluation of coefficients α and β.  

In the end, all the newly deduced algebraic 
relations were verified using numerical methods, 
within an appropriate case study. 

 
The double-parabolic law on the vertical 

distribution of velocities in channels 
 
The relative velocity profile  fv z   was 

estimated on sections using the following second 
degree polynomial functions (7): 

 

   
 

2
1 1 1 max

2
2 2 2 max

,  for 0f
,  for 1

a z b z c z zv z
a z b z c z z
        

     

   
 

   
 

 
Using characteristic values (1), (5) and (6), 

the points imposed on function (7) graph were 
deduced: 

        max max, 0, , 1, , ,f sz v v v z v                    (8) 

Constraining the maximum point to check 
both branches of function (7),  max maxfv z  , the 
equations in (7) can also be presented as follows 
(9): 

   
 

2
1 max max max

2
2 max max max

,  for 0f
,  for 1

a z z v z zv z
a z z v z z

       
    

   
 

   
 

 
Equations    2

1 max maxf 0f fv a z v v        

and    2
1 max maxf 1 1s sv a z v v         

resulted in the following solutions for coefficients 
a1 and a2: 

   
max max

1 22 2
max max

,
1

f sv v v va a
z z

 
   



   

 
               (10) 

 
Introducing expression (10) in relation (9) 

resulted in the subsequent analytical expression, in 
relative coordinates for the velocity profile (11): 
 

   
 

 
 

2max
max max max2

max
2max

max max max2
max

,  for 0
f

,  for 1
1

f

s

v v
v z z z z

zv z v vv z z z z
z


    

        
 

 
    


 

 
    



 

 
 
Function (11) must comply with the next 

integral condition:  

 
1

0

f d 1z z                    (12)

   
Bearing in mind the definition on the 

sections of function  fv z  , the definite 
integral, from the left-hand term of the above 
stated relation, can be evaluated as the sum of three 
definite integrals: 
 

 
 

 

 
 

max

max

1
2max

max2
0 0max

1 1
2max

max max2
0max

f d d

d d
1

z
f

s

z

v v
z z z z z

z
v v z z z v z

z


     


     



 

 





 
    



 
   



     (13) 

 
Putting into practice the integration rules of 

polynomial functions, successively results in: 

 
 

 

 
   

max

max

1
3max

max2 0
0 max

13 1max
max max2 0

max

1f d
3

1
31

zf

s

z

v v
z z z z

z
v v z z v z

z

        
        






 
   


 

  


(14) 

   
1

max max
0

f d 2 3s s fz z v v v v z                

Conditioning the integral (14) to check 
relation (12) resulted in: 

 max max2 3 1s s fv v v v z                         (15) 

Solving the system formed by equations (5) 
and (15), the subsequent relations for the relative 
velocities sv  and maxv  resulted in(16): 
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max

max

3
1 2

f
s

v z
v

z
 


  

 



, max

max
max

3
1 2

f

s

v z
v

z



 

 
  

 



 
 

The algebraic expression for the  
relative quota medz  

 
The relative average velocity is equal to 1 

and corresponds to the first branch of the function 
 fv z   given by relation (11) for medz z  , 

where medz is the relative quota corresponding to 
the average velocity:  

    2
max max med max max 1fv v v z z z             

The solution of the above-mentioned second 
degree equation, for the sign alternance that 
respects the condition med maxz z  , is the 
following: 
    med max max1 f fz z v v v                 (17)

       
Algebraic expressions for Boussinesq 

coefficient, β, and Coriolis coefficient, α 
 

Boussinesq and Coriolis coefficients, 
respectively, are provided by the following 
integrals [2]: 

 
1 2

0
f z dz                 (18) 

and 

 
1 3

0
f z dz                 (19) 

Introducing into relation (18) equation (9) 
for the function  f z , results in the subsequent 
sum of definite integrals on disjoint intervals: 
 

 
 
 

max

max

1 2

0
22

max 1 max0
21 2

max 2 max

f

d

d

z

z

z dz

v a z z z

v a z z z

   

     
      









 

   

   

 

Raising to the second power the binomial 
expressions of each of the above-mentioned 
integrals, and disregarding the constant factors 
below the integration symbol, results in the 
following sum of integrals from the power 
functions: 

 

 
     

 
     

max

max max

max

max max

2
max max 10

2 2 4
max 1 max0 0

12
max max 2

1 12 2 4
max 2 max

d 2

d d

d 2

d d

z

z z

z

z z

v z v a

z z z a z z z

v z v a

z z z a z z z

      

      

    

     


 


 



 



 

 

     

 

     

 
Next, after uniting the disjointed intervals 

and performing the integration operations, results 
in the following: 

 

     

 

   

max max

max

max

12
max max 10

3 2 5
max 1 max

0 0
13

max 2 max

12 5
2 max

2d
3

1
5

2
3

1
5

z z

z

z

v z v a

z z a z z

v a z z

a z z

     

            
     
     


 





 

   

  

 

 

Upon introducing the previously-mentioned 
integration limits, for the Boussinesq coefficient β, 
results in the next algebraic expression   (20): 
 

       

     

2 3 2 5
max max 1 max 1 max

3 2 5
max 2 max 2 max

2 1
3 5

2 11 1
3 5

v v a z a z

v a z a z

         

       

   

  
 

Going over similar calculation stages for 
coefficient α, successively results in: 
 

 
 
 

max

max

1 3

0
32

max 1 max0
31 2

max 2 max

f

d

d

z

z

z dz

v a z z z

v a z z z

   

     
      









 

   

   

 

     
       

     
       

max max

max max

max max

max max

3 2 2
max 1 max max0 0
2 4 3 6

1 max max 1 max0 0
1 13 2 2

max 2 max max
1 12 4 3 6

2 max max 2 max

d 3 d

3 d d

+d 3 d

3 d d

z z

z z

z z

z z

v z a v z z z

a v z z z a z z z

v z a v z z z

a v z z z a z z z

   

   

   

    

 
 

 
 

 

 

 

 

    

      

    

      

 

     

       

     

     

max

max max

max

max max

13 2 3
max 1 max max0 0

2 5 3 7
1 max max 1 max

0 0
12 3 2

2 max max 2 max

1 15 3 7
max 2 max

d
3 1
5 7

3
5

1
7

z

z z

z

z z

v z a v z z

a v z z a z z

a v z z a v

z z a z z

      
         
     

        




 



 

   

    

  

   

 

or 
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       

     

     

     

3 2 3 2
max 1 max max 1

5 3 7
max max 1 max

2 3 2
2 max max 2 max

5 3 7
max 2 max

3
5

1
7

31
5

11 1
7

v a v z a

v z a z

a v z a v

z a z

     
       

    
        

  

  

 

 

   (21)    

Introducing into equations (20) and (21) 
expressions (10) for coefficients a1 and a2, after 
performing the elementary calculations, ultimately 
results in the following expressions for coefficients 
β and α, depending only on the quota (level) and 
the characteristic relative velocities: 

 

 

 
 
  

max max

2
max max max

max max

7
3

1 7 .
5 3

1

f f

s

s

v v v v

v z v v

v v z



        
        

  
 
 

   

  

  

 (22) 

and: 
 

   
   

 

   

   

 

3
max max max

2
max max max

2

max

max max

2
max max max

2
max

3
5

1
7

1

3
5

1
7

f

f

f

s

s

s

v v v z

v v v v

v v

v v z

v v v v

v v

     
    
  
  
 

    

    
 
  
 

   

   

 

  

   

 

          (23) 

 
With notations: 

max_ maxf fv v v     , max_ maxs sv v v              (24) 
relations (22) and (23) were finally rewritten in as 
follows: 
 

 
 

max_ max max2
max

max_ max max

7 .1 3
75 . 1
3

f f

s s

v v v z
v

v v v z


           
          

   


   

  

(25) 

 
 

 

 
 

 

2
max

3
max max_ max max_ max

2

max_

2
max max_

max_ max 2

max max_

3
5

1
7

3
51 1

7

f f

f

s

s

s

v
v v z v v

v

v v
v z

v v



 
  

        
 
  
  

   
     

   
 



   



 
 

 

     

(26) 
CASE STUDY 

 
The basic data referring to the case study 

regard a trapezoidal channel made of concrete 
from the Irrigation and Drainage Laboratory of the 
Technical University in Iasi, with a bottom width b 
= 0.60 m, angular coefficient m = 0.89 and 
roughness coefficient  n = 0.014. At a water depth 
of h = 0.49 m and hydraulic slope of Ih=0.175 ‰, 
the channel transported a flow of Q = 0.198 m3s-1, 
with the average velocity of the entire section 
being 0.39 m s-1.  

The vertical taken into consideration in 
performing the velocity profile passes through the 
channel’s axis, the hydraulic radius corresponding 
to this vertical being  R = h = 0.49 m. 
Applying formulae (2), (3) and (6) resulted in: 
 

-1

* 9.81 0.49 0.000175

= 0.0290 ms
f hv v g h I         

 
1 6

1 6

-1 -1

1

1 0.49 0.49 0.000175
0.014
0.5873 ms 0.39 ms

h hV C R I h h I
n

    

   

 

 

 
1 6

1 6

* 0.029 0.049385;
0.5873

0.014 9.81 0.49 0.049385

f f
vv v n g h
V





     

   

 

 
Making use of relations (1), for the middle 

of the variation interval for maxz (5), with 
1.29  , as well as (16), respectively resulted in: 

 
 max max 4 5 5 6 2 0.8167z z h    ,  
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max

max

max

3 3 0.049385 0.8167
1 2 1 2 1.29 0.8167

1,07106, 1.29 1.07106=1.38167

f
s

s

v z
v

z

v v





   
  

     

    

 




 

 
From relations (10), coefficients a1 and a2 

were calculated, and in addition the real expression 
of the function was established (11):  

 

   
max

1 2 2
max

1.38167 0.049385
0.8167

-1.9974336,

fv v
a

z

 
    



 


 

   
max

2 2 2
max

1.38167 1.07106
1 1 0.8167

-9.244591

sv va
z
 

    
 



 


 

 

 

 

 

2

2

1.38167-1.9974336 0.8167 ,

for 0 0.8167
f

1.38167-9.244591 0.8167 ,

for 0.8167 1

z

z
v z

z

z

  

    
  

  




 





                                    (27) 
Relation (15) and relation (12) are verified 

analytically and numerically, respectively, 
resulting in:  

  

 

 

max max2 3

2 1.38167 1.07106
3

1.07106 0.049385 0.8167

1.0000001924666

s s fv v v v z       

   
  
   



    

 

 

 
1

0
f d 1.0000001924665z z    ; 

 

Hence the analytical expression (27) for the 
velocity profile in relative coordinates, on the 
considered vertical, is correct and accurate. 

Following, the the above-presented 
applications - the values for the relative quota 

medz and for the coefficients β and α - were 
determinated; thus using relations (17), (24), (25) 
and (26) respectively resulted in: 
 

 

med max
max

1

1 0.049385 0.8167
1.38167 0.049385

0.379572

f

f

v
z z

v v


  



  






 

 

 

 
max_ max 1.38167 0.049385=

=1.3322855,

f fv v v      
 

 
max_ max 1.38167 1.07106

0.310608

s sv v v     



  
 

 

 

2
71 1.38167 0.0493851.38167 35 1.3322855 0.8167

71 .1.38167 1.07106 0.310608
35 1 0.8167

1.14779085


           

          



 

 

 

3

2 2

2

2

1.38167 0.8167 1.3322855

3 11.38167 1.3322855 1.38167 1.3322855
5 7

31.38167 1.3322855
50.310608 1 0.8167 11.38167 1.3322855
7

1.39150495

    

        
 

    
   

   
 



 

The values for coefficients β and α were 
obtained and by the numeric integration of 
relations (18) and (19), using the Lobato method, 
and presented in MATLAB with the standard 
external function quadl.m, resulting in values 
compatible with those provided by relations (25) 
and (26): 
 

 
1 2

0
f 1.147790849065254z dz      ,  

 

 
1 3

0
f 1.391504948866777z dz       

 

The graphical representation of function (27) 
lead to the vertical velocity profile presented in 
Figure 1; imposed points are marked (8) on the 
graphic representation, as well as the point 
corresponding to the average velocity  med,V z . 

The graphical representation of function (27) 
lead to the vertical velocity profile presented in 



Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi 
 

66 

Figure 1; imposed points are marked (8) on the 
graphic representation, as well as the point 
corresponding to the average velocity  med,V z . 

If the hydraulic slope is also indicated Ih (or 
if it can be approximated with the channel’s slope 

thalweg), then the vertical average velocity can 
also be estimated, and in the end the velocity 
profile drafted following a vertical axis and in 
absolute coordinates (z, v); obviously the aspect of 
this draft is identical to the one in figure 1.
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Figure 1. Relative velocity profile according to the vertical axis drawn in the channel’s axis. 
 

CONCLUSIONS 
 

The analytical relation for the velocity 
profile according to a vertical axis, in relative 
coordinates, was established using minimum 
channel data: depth h, roughness n, relative quota 
(level) at which the maximum velocity is recorded 

maxz and the relation between the velocity at the 
surface stream and the maximum velocity, φ. 

If, in addition, the hydraulic slope is also 
indicated (which can be estimated with the 
channel’s thalweg slope) the velocity profile can 
be estimated according to a vertical axis and in 
absolute coordinates (z, v). 

Analytical relations were deduced for the 
relative velocities at the bottom, maximum and at 
the water surface, as well as for the relative quota 
corresponding to the average velocity. 

Analytical relations for Coriolis and 
Boussinesq coefficients were deduced, relations 
were verified using a performant numerical 
integration method. 

Systematic experimental research is 
necessary for accurately establishing the relative 
quota maxz , coefficient φ and for the analysis of 
the accuracy of the proposed double parabolic 
distribution law. 
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