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Abstract 
 
Food freezing processes are largely studied because of their importance in achieving food safety. In plate freezers, the
cold surfaces in contact with the product are stainless steel or aluminum hollow plates through which circulates the 
refrigerant. The rate of the freezing process is critical to the product’s quality and to the productivity of the process and
therefore the freezing dynamics is of extreme importance. Another application may be the production of ice blocks 
required for products refrigeration in places where no refrigeration facilities are available. The aim of the paper is to
study theoretically the process of ice buildup in the space between the parallel plates of a plate freezer. This study is 
performed using implicit finite difference schemes. The method involves the use of variable step networks attached to
the liquid and solid domains. The evolutions of the freezing rate and of the solid layer thickness are determined for 
different geometry ratios and cooling temperatures.  
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Mathematical modeling of the freezing 

process is necessary to make accurate predictions 
regarding the process dynamics, i.e. its time-
dependent evolution. Knowing the dynamics of 
freezing will allow the correct calculation of the 
freezing equipment in terms of performance 
parameters that it must ensure, so as to be able to 
conduct freezing under optimal conditions. 

Freezing is used in food industry to preserve 
raw or processed food products. Among many 
methods, on site freezing is used in plate freezers 
in the case of freshly harvested fruits, vegetables, 
offal, fish or seafood (Ansari, F.A., 1984). Plane 
geometry also intervenes when making ice blocks. 

The main parameters that control the 
dynamics of the process are (Ansari, F.A., 1984), 
(Ansari, F.A., 1999):  

– the initial temperature of the product; 
– the product’s geometry (size, surface and 

shape); 
– the product’s structure (homogeneous or 

heterogeneous); 
– the product’s thermal properties; 
– the freezing temperature. 
Heat transfer processes occurring during 

freezing are of high complexity, because on one 
hand the product has complicated shape and 
structure, and on the other hand, the thermal 
regime is by definition a non-stationary one and it 
implies the phase change of water (freezing). The 
mathematical model of these processes refers to 
the moving boundary problem, i.e. the unsteady 
conduction heat transfer in which the solid-liquid 

phase change occurs and the solid-liquid interface 
moves through the phase change material. 

The moving boundary problem in the case of 
phase change was subjected to many approaches 
(Baird C.D., Gaffney J.J., 1976), (Crank J., Gupta 
R.S., 1980), (Hale N.W., Viskanta R., 1980) 
(Ozisik M.N., 1994). The one-dimensional case 
allows us to use the finite difference method and 
thus obtain the numerical solution of the moving 
boundary problem by transposing the heat transfer 
partial differential equation in the finite difference 
form and to solve it via a computer code. 

 
MATERIAL AND METHOD 

 
Let us consider a rectangular metallic 

container filled with water (phase change material – 
PCM). In order to assume the heat transfer as one-
dimensional, let us suppose that the depth of the 
container is much smaller with respect to its height 
and width. At the beginning, the entire system 
(metallic wall + water) has the same temperature T0, 
above the fusion temperature TF of the PCM. The 
container is cooled on its both sides and 
consequently one can consider only half of its depth. 
At time τ = 0, the wall is cooled (at temperature TC < 
TF) from the outside. Consequently, the perturbation 
propagates through the wall until it reaches its inner 
surface (phase I). Phase II is represented by the 
cooling of the liquid until the temperature of the inner 
surface of the wall equals TF. At this moment, phase 
III (solidification) starts and consequently the first ice 
layer grows. Its thickness increases as time passes, 
whereas the interface moves across the PCM region. 
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The physical properties of the wall and of the PCM 
are supposed constant. 

By attaching a constant step network to the 
metallic wall (NW – number of nodes) and a variable 
step one to the two PCM domains (liquid – water: NL 

nodes, and solid – ice: NS nodes), one can write the 
finite difference equations that describe the heat 
transfer phenomena that occur. The system is 
schematized in Figure 1. 

 

 
Figure 1 Schematic of the system 

 
Using as variable the dimensionless 

temperature defined as θ = (T – TC) / (T0 – TC), the 
finite difference equations describing the unsteady 
one-dimensional heat transfer with phase change are 
(Horbaniuc, B., 1996; Incropera, F.P., De Witt, D.P., 
2002, Ozisik, M.N., 1994): 

The heat transfer equation for a constant depth 
domain (such as the metallic wall, or the liquid 
domain before freezing starts) is: 

 

1
1 1

1 12p p p p
m m m mθ θ θ θ

α α
−

− +
⎛ ⎞− + + − =⎜ ⎟
⎝ ⎠

 (1) 

 
where m is the current node, α is a parameter that 
dictates the stability and convergence of the finite 
difference scheme, and p is the number of the time 
step. This equation corresponds to the so-called 
implicit scheme that links the actual temperatures in 
three consecutive nodes to the temperature in the 
current node at the preceding time step p – 1. This 
type of scheme is unconditionally stable and 
convergent regardless of the magnitude of the time 
step Δτ, but it requires the simultaneous resolution of 
all of the equations for all of the nodes. We have 

surmounted this difficulty by applying the Gauss 
elimination technique.  

During freezing, the depth of a PCM domain is 
variable (the interface is moving) and therefore the 
space step is variable too. For this reason, the heat 
transfer equation in the finite difference form is: 

 

1
1 1

1 12p p p p
m m m mθ θ θ θ

α α
−

− +
⎛ ⎞− + + ⋅ − = ⋅⎜ ⎟
⎝ ⎠

%  (2) 

where 1p
mθ
−%  is the temperature in node m at the 

preceding time step p – 1, but in the position of the 
node corresponding to the new network (during the 
current time step p, the node has migrated from its 
previous position to the new one). This situation is 
illustrated by Figure 2. 

In order to make the equation match the actual 
evolution of the phenomenon, one needs to find the 
value of the nodal temperature 1p

mθ
−% . Heitz and 

Westwater have solved the problem by linearly 
extrapolating the values of the nodal temperatures at 
time (p – 1) Δτ (Heitz, W.L., Westwater, J.W., 1970). 
We have adopted a more accurate solution by using 
Lagrange polynomials (Horbaniuc, B., 1996). 
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Figure 2 Migration of the nodes during a time step 

 
The equation of the interface rate is: 
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where � is the density of ice, lf is the latent heat of 
fusion of water, S is the depth of the solid domain, 
and � is the thermal conductivity. Subscripts account 
as follows: W for the metallic wall, S for the solid 
phase (ice) and L for the liquid phase (water). 

By applying the finite difference equations one 
obtains two sets of linear algebraic equations (written 
in the matrix form), one for the wall – ice domains: 

1 1 1C BΘ⋅ =  (4) 
and one for the liquid domain: 

2 2 2C BΘ⋅ =  (5) 
where C1 and C2 are the diagonal coefficient 
matrices, �1 and �2 the unknown (temperature) 
column vectors and B1 and B2 are column vectors:
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The two sets are coupled via the interface rate 

equation (3). 
Both sets have been solved by means of the 

Gauss elimination technique. 
 

RESULTS AND DISCUSSIONS 
 
We have considered the case of water 

initially at T0 = 15°C (15 degrees of superheating). 
The metallic wall was supposed to consist of a   1 
mm thickness steel sheet. The depth of the PCM 
domain has been considered in three cases: 15 mm, 
30 mm and 50 mm, corresponding to a wall to 
PCM ratio W/H of 0.066, 0.033, and 0.020 
respectively. The outer surface of the wall is 
cooled at different temperatures (–20, –25, and      
–30°C) which implicitly means that the boundary 
condition is of the first type. The algorithm 
modeled the three phases of the process: 
propagation across the wall, propagation across the 
superheated liquid, and solidification. We have 
studied the evolution of the interface rate and of 
the solid fraction (the percentage of the solid phase 
depth with respect to the total depth of the PCM 
domain) versus the dimensionless time τ  defined 
as: 

2
Sa

H
ττ =  (12) 

where aS is the thermal diffusivity of the solid 
phase, τ is time and H is the total depth of the 

PCM. The results are shown in Figures 3 through 
6.  

Figure 3 plots the interface rate S& versus 
τ for a value of the cooling temperature (TC = – 
25°C) in the case of the three values of the W/H 
ratio. One notices that the higher values of the 
interface rate characterize the thin domain (W/H = 
0.066), whereas the slower evolution can be 
observed when the domain is thicker (W/H = 
0.020). At lower W/H ratios, the plot exhibits an 
inflection point which fades out as the ratio 
increases. 

Figure 4 comprises the interface rate plots 
for all of the W/H ratios and cooling temperatures. 
The trends that have been noticed for a single 
cooling temperature (see Figure 3) can also be 
seen at different W/H ratios. The highest interface 
rates are found when W/H is less and TC is lower. 
The higher the W/H ratio and the higher the 
cooling temperature TC, the slower the process is 
(low interface rate). 

The ice fraction evolution is plotted in 
Figure 5 for W/H = 0.020 and for different cooling 
temperatures. As expected, the slowest evolution 
corresponds to the highest cooling temperature and 
the fastest one, to the lowest temperature. 
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Figure 3 The interface rate versus the dimensionless 
time at TC = – 25°C for different W/H ratios 

 

 
 

Figure 4 The interface rate versus the dimensionless 
time for all of the considered W/H ratios and cooling 

temperatures 
 

 
 
Figure 5 Solid fraction versus the dimensionless time 

at W/H = 0.020 for different cooling temperatures 
 

The evolution of the solid fraction for 
different W/H ratios is plotted for the case when 
the cooling temperature is – 25°C (figure 6).  

 

 
Figure 6 Solid fraction versus the dimensionless time 

at T0 = –25°C for different values of the W/H ratio 
 

Unlike the interface rate plots, the curves in 
this case overlap perfectly. This means that at a 
certain degree of cooling of the metallic wall the 
depth of the PCM domain practically has no 
influence on the growth of ice layer, the only 
parameter that dictates the evolution of the solid 
fraction being the cooling temperature. 

 
CONCLUSIONS 

 
Knowledge on the dynamics of the freezing 

process is useful when designing food freezing 
equipment or ice blocks making equipment. 

The freezing process in one-dimension heat 
transfer in plane geometries has been studied by 
means of the implicit finite difference scheme 
using a variable step network attached to the PCM 
domain (water in this case). In order to surmount 
the difficulty caused by the node migration in 
terms of the nodal temperature at the current time 
step with respect to the previous position of the 
respective node, we have used the Lagrange 
polynomials interpolation technique. 

The numerical results obtained on an 
example that considered a steel wall cooled at 
different temperatures and a PCM domain of 
different thicknesses lead to the following 
conclusions with respect to the dynamics of the 
freezing process: 

– the thicker the PCM domain, the lower is 
the interface rate for a given cooling 
temperature; 

– the lower the cooling temperature, the 
higher is the interface rate for a given 
thickness of the PCM domain; 

– the ice fraction grows more rapidly at 
lower cooling temperatures at the same 
W/H ratio; 

– the W/H ratio has no influence on the 
solid fraction at the same cooling 
temperature. 
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