THE APPRECIATION OF WATER HYGIENIC QUALITIES IN A FARM OF CHIKEN BROILERS GROWING

Doina Leonte, C. Leonte

Faculty of Animal Sciences, University of Agricultural Science and Veterinary Medicine „Ion Ionescu de la Brad” Iasi, Romania
e-mail: doinaleonte@gmail.com

Abstract

The water role for animal organism was marked out through more experiences.
In some terms water can transport parasitical maladies, conserving and transmitting parasites, eggs and other parasitical forms.
Through hygienic qualities, water influences the organism health condition, the level and quality of procured production.
The intention of present study is that of hygienic qualities appreciation of water used in chiken broilers growing, based on organoleptical characteristics and organic substances content.
Through method of warm oxidation with KMnO4 it was appreciated that organic substances level from distribution network, from water and recipients cistern had oscillated between 10-18 mg KMnO4/l. The acquired results were compared with values allowed by STAS 1342/1991 (10-12 mg KMnO4/l).

Key words: organic, standard, hygienic, control, rules

MATERIAL AND METHOD

Experiments were envolved in a chicken broilers growing farm with battery growing system.
Water quality appreciation was based on physical properties (colour, turbidity and temperature), organoleptical properties (odour and taste) and chemical properties (organic substances level).
For laboratory analysis were gathered water tests from distribution network, water tank and water bowls.
From distribution network, tests were gathered from different points, after tap was opened about 10 minutes.
From pools, harvest was made on outlet place. From water tank, tests were gathered from outlet point.
For colour intensity determination it was utilized a platinum-cobalt solution, which allows degrees expression of colour. Colour degree is the dyeing produced by a solution contains 1 mg platinum on 1 litre of water, which allows tape visibility thus:
- over 60 cm - clear water
- between 30-60 cm - opalescent water
- under 30 cm - turbid water.
Water temperature was determined with a common thermometer, whose tank was braided in gauze and introduced in water for 10 minutes.
For water odour determination we introduced 500 ml water in baloon, which we closed with a bung. After an energetic agitation we took out the bung and we observed odour, then we warm up the test on 60-70°C. We determined odour with other known odours: flavoured, fish, mouldiness, and the intensity we appreciated according to STAS 1342/1991.
Water taste can be expressed through common terms (sweet, rancid, brackish, sour), and the intensity is appreciated according a scale like the taste one.
Water chemical properties can be expressed through different qualities: toughness, ammonia quantity, nitrits nitrates, chlorides, iron and organic substances. Organic substances from water were indirectly determined, through method of warm oxidation with potassium permangananese solution.
RESULTS AND DISCUSSIONS

The drinkable properties were determined on tests gathered on February (for winter period) and May (for summer period). The physical properties results of these exams are presented on table 1.

<table>
<thead>
<tr>
<th>Water provenance</th>
<th>Water temperature °C</th>
<th>Colour mg caramel/l</th>
<th>Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Network</td>
<td>I* 8</td>
<td>Colourless</td>
<td>I clear</td>
</tr>
<tr>
<td>Central Tank</td>
<td>V* 16</td>
<td>Colourless</td>
<td>V clear</td>
</tr>
<tr>
<td>Water bowls</td>
<td>10 Colourless clear</td>
<td>Colourless clear</td>
<td>18 Colourless clear</td>
</tr>
</tbody>
</table>

*I = winter; V = summer

Organoleptical properties of water were normal, without any strange odour or taste.

Among water chemical properties it was determined the level of organic substances.

The organic substances level diversified between 10-12 mg KMnO₄/l on tests gathered from distribution network and it diversified between 12-18 mg KMnO₄/l on tank and bowls level, outrunning the drinkable rates allowed by STAS, which present an oxidation index of 10-12 mg KMnO₄/l.

CONCLUSIONS

- Organoleptical properties corresponded with drinkable terms for water analysed from distribution network, central tank and bowls level.
- Organic substances were identified in STAS limits just on water test from distribution network; on the other tests the organic substances quantity constantly exceeded the maximum allowed limit, which denotes presence of nutrient substratum for microorganism.

REFERENCES

Journal articles