QUALITY OF ALFALFA (Medicago sativa L.),
IN THE FIRST YEAR OF VEGETATION

Mihai STAVARACHE¹, Vasile VÎNTU¹*, Costel SAMUIL¹, Iulian MUNTIANU¹
Aida ALBU¹, Doina TARCAU¹, Constantin Iulian POPOVICI¹, Ciprian CIOBANU¹

email: mihaistavarache@uiaasi.ro

Abstract

In a bifactorial experience, during March-October 2010, at the Research Station Ezăreni from Iasi, we studied alfalfa in the first year of vegetation, analyzing the effect of seed inoculation with symbiotic bacteria Rhizobium meliloti Dangeard and the effect of fertilization on the dry matter (DM) yield, the amount of crude protein per hectare, the leaves/stems ratio and the forage quality indicators (CP - crude protein content, NDF - neutral detergent fiber content, ADF - acid detergent fiber content and RFV - relative feed value). The results showed that under experimental conditions, the interaction of two factors led to DM yields ranging from 3.04 to 7.75 t ha⁻¹ and a quantity of crude protein of 1121-1539 kg ha⁻¹. CP content in leaves ranged from 24.04 to 30.29% and 10.51 to 19.80% between the strains, the leaves/stems ratio having the biggest influence on CP content of the whole plant. Analyzing the data, we observed that seed inoculation had an insignificant influence on the forage quality indicators. Fertilization positively influenced DM yield and amount of CP produced and had a negative impact on the leaves/stems ratio, plant content in CP, NDF, ADF and RFV.

Key words: alfalfa, inoculation, fertiliser, productivity, quality

Alfalfa (Medicago sativa L.) is one of the most valuable forage due to high production of green mass or hay and high quality forage.

Lucerne has a high quality potential and ability to control factors can affect the quality and will improve production quality. Factors affecting quality are represented by soil fertility, cultivar, the presence of other species in culture, the use of pesticides, climatic conditions, harvesting (season, time of day and stage of development at harvest) and the method of preservation (Lloveras J. et al., 2004; Stancheva I. et al., 2008; Dragomir Carmen and Moisuc A., 2007).

Evaluating the amount of crude protein produced per unit area, alfalfa can not be surpassed by any other forage crop in specific agro-ecological conditions of our country.

Inoculation of seeds and providing the necessary nutrients through fertilization (mineral or organic) are two important technological links to improve productivity and quality of alfalfa (Oliveira W. S. et al., 2004; Berg W. K. et al., 2009; Dragomir N. and colab., 2010).

MATERIAL AND METHODS

The research was conducted during March-June 2010, on the Ezăreni farm (47°05'-47°10' North latitude and 27°28'-27°33' East longitude), farm belonging to the University of Agricultural Sciences and Veterinary Medicine Iaşi. The soil from the region is a cambic chernozem characterized by the indicators presented in table 1.

| Physico-chemical characteristics of soil that was placed experience |
|-----------------|-------|-------|-------|-------|-------|-------|-------|
| Horizon | Clay (<0.002) | pH | Humus (%) | N total (%) | P-Al (ppm) | K mobile (ppm) | Ca exch. (me) |
| Ap 0-20 cm | 41.8 | 6.68 | 2.24 | 0.178 | 26.00 | 242 | 15.21 |
| Ap 20-28 cm | 38.8 | 6.78 | 2.40 | 0.149 | 10.43 | 178 | 15.38 |

Research has sought influence of inoculation and fertilization on the dry matter yield (DM) per hectare, the amount of crude protein per hectare, the leaves/stems ratio and the quality indicators (CP - crude protein content, NDF - neutral detergent fiber content, ADF - acid detergent fiber content and RFV - relative feed value) of alfalfa (Medicago sativa L.) in the first year of vegetation. The experiment was

¹ University of Agricultural Sciences and Veterinary Medicine, Iasi
* Coordinator
bifactorial, with a design type 2x4, arranged in subdivided plots in three replications, which have a 10 m² harvesting area (2m x 5m). The factors were as follows: A- seed inoculation with two graduations (a₁- uninoculated and a₂- inoculated) and B- fertilization with four graduations (b₁- unfertilized, b₂- N₁₀ P₅₀, b₃- N₇₅ P₅₀ and b₄- 30 t·ha⁻¹ manure). Yield production was determined by weighing the yield harvested from an area of 10 m² then reported per hectare.

Dry matter was determined by treating samples at 105°C for 3 hours. The leaves/stems ratio was determined by separating the stem, leaflets, buds and flowers by the stem, weighing them separately and report their amount to the amount of strain (leaves/stems ratio).

Nitrogen content was determined by Kjeldahl method, and NDF and ADF content were determined by Van Soest method.

The amount of CP per hectare was calculated based on DM production per hectare and its content in the CP.

RFV was calculated using the formula (Sheaffer C.C. et al., 1995; Boman R. L., 2010):

\[
RFV = 88.9 - (0.779 \cdot ADF) \cdot \frac{120}{NDF} - 1.29
\]

Depending on the content CP, NDF, ADF and RFV, alfalfa hay can be classified into six quality classes (table 2), used by many authors (Mirzaei-Aghsaghal A. et al., 2007; Kiraz A.B., 2011; Redfearn D. and Zhang H., 2011).

The biological material used was represented by Sandra alfalfa variety (F 660-94) registered in 2003 to I.N.C.D.A. Fundulea. (Schitea Maria and Martura T., 2004).

Table 2

<table>
<thead>
<tr>
<th>Quality standard</th>
<th>CP (% from DM)</th>
<th>NDF</th>
<th>ADF</th>
<th>RFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Prime</td>
<td>>19</td>
<td><40</td>
<td><31</td>
<td>>151</td>
</tr>
<tr>
<td>1</td>
<td>17-19</td>
<td>40-46</td>
<td>31-40</td>
<td>125-151</td>
</tr>
<tr>
<td>2</td>
<td>14-16</td>
<td>47-53</td>
<td>36-40</td>
<td>103-124</td>
</tr>
<tr>
<td>3</td>
<td>11-13</td>
<td>54-60</td>
<td>41-42</td>
<td>87-102</td>
</tr>
<tr>
<td>4</td>
<td>8-10</td>
<td>61-65</td>
<td>43-45</td>
<td>75-86</td>
</tr>
<tr>
<td>5</td>
<td><8</td>
<td>>65</td>
<td>>55</td>
<td><75</td>
</tr>
</tbody>
</table>

In the area where research was conducted, the 2009-2010 crop year, monthly average temperatures had no significant deviations from the multiannual mean values.

During the growing season shortages of water was recorded in the following periods: third decade of April and May, the second and third decade of July, and the first decade of August.

In the third decade of June there were a quantity of 132 mm rainfall, well above normal.

The results were interpreted statistically by analysis of variance and calculation of least square difference (LSD).

RESULTS AND DISCUSSION

If investigations were highlighted distinct and very significant increases in all fertilized variants, each of the 3 cuts (table 3). (figure 1).

The interaction between two factors caused maximum DM production increases at a₁b₁ variant, each of the three cuts in the first year of vegetation. Production differences were due to fertilization, especially phosphorus. Phosphorus is a essential nutrient for alfalfa plants development in the first year of growing. Also, nitrogen applied in small quantities (20-50 kg·ha⁻¹) when sowing, provide the necessary plants nitrogen to the formation of nitrogen fixing nodules. The lack of these elements in the first development phenophases is not compensated for future fertilization, negative effects are manifested throughout the entire life of the alfalfa crop. This was confirmed by research conducted by other authors (Mullen R.W. et al., 2000; Delgado I. et al., 2001; Stancheva I. et al., 2008).

Inoculation, in the Ezăreni experimental conditions, did not cause significant production increases. Inoculation efficiency is influenced by various factors such as presence of *Rhizobium meliloti* Dangeard soil bacteria and other mycorrhizal microorganisms (fungi), cultivated variety, bacterial strain used, soil N, Ca, B, Co, Mo content, soil aeration, previous crop, etc. (Kuykendall L.D. et al., 1999; Mačešić D. et al., 2007).

Other authors (Varga P, et al., 1973; Moga I. et al., 1996) show that there is a close relationship between the efficiency of alfalfa seed inoculation and soil content of exchangeable calcium. This relationship indicates alfalfa seed inoculation with *Rhizobium meliloti* Dangeard selected strains in all cases where the soil content of exchangeable calcium is less than 2 %. Then, the exchangeable calcium content of soil is more than 2 %, inoculation is ineffective.
The proportion of each cut from total DM production

Research has shown that the leaves/stems ratio was different, depending on the experimental plot analyzed and the number of cut.

At each of the three cuts, the leaves/stems ratio was better (meaning a higher percentage of leaves), for the unfertilized and organically fertilized plots (table 4, figure 2). Percentage of leaves was lower in mineral fertilized plots, due to more vigorous strains and larger strains diameter.

The leaves/stems ratio varied depending on the number of cut. Thus, at the first cut the average percentage of leaves was approximately equal to that of strains, to the second cut leaves were 10% less than the stems, and at the third cut the leaf percentage was 27% higher than that of strains. The results confirm the research of other authors in similar experimental conditions (Bender A. and Tamm S., 2010; Stančev Vidica et al., 2010).

The leaves/stems ratio is an important
quality indicator, because of this depends quality of hay obtained. Percentage of leaves is desirable to be as high as possible, because in the leaves are found a crude protein content at least twice then in the straws, as shown by many authors (Popovic S. et al., 2001; Petkova D. and Panayotova G., 2007).

Following results were found, although fertilization positively influenced the content of the leaves and stems in CP. CP content in plants was lower in fertilized plots due to leaves/stems ratio, negatively affected by fertilization (table 5). Although plants CP content in the fertilized variants was lower, the amount of CP was higher, statistically assured, due to higher yields obtained from these plots (table 6, figure 3).

Table 5

<table>
<thead>
<tr>
<th>Experimental plot</th>
<th>First cut</th>
<th>Second cut</th>
<th>Third cut</th>
<th>First cut</th>
<th>Second cut</th>
<th>Third cut</th>
<th>First cut</th>
<th>Second cut</th>
<th>Third cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1-c</td>
<td>b3</td>
<td>24.51**</td>
<td>27.80***</td>
<td>30.29***</td>
<td>11.09**</td>
<td>14.45*</td>
<td>19.73***</td>
<td>17.92*</td>
<td>20.17***</td>
</tr>
<tr>
<td>b1</td>
<td>24.19</td>
<td>26.25</td>
<td>29.84***</td>
<td>10.77</td>
<td>14.22</td>
<td>19.73***</td>
<td>18.55</td>
<td>21.60</td>
<td>28.22***</td>
</tr>
<tr>
<td>a2</td>
<td>b3**</td>
<td>26.95**</td>
<td>29.67***</td>
<td>10.87</td>
<td>14.30</td>
<td>19.75***</td>
<td>17.98**</td>
<td>20.85***</td>
<td>27.17***</td>
</tr>
<tr>
<td>a2</td>
<td>b4</td>
<td>27.17***</td>
<td>30.14***</td>
<td>11.06**</td>
<td>14.48**</td>
<td>19.80***</td>
<td>17.67***</td>
<td>19.89***</td>
<td>26.51***</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Experimental plot</th>
<th>Amount of CP (kg ha⁻¹)</th>
<th>% as referred to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1: without inoculation (control)</td>
<td>First cut</td>
<td>Second cut</td>
</tr>
<tr>
<td>b1- N₀P₀</td>
<td>361</td>
<td>528</td>
</tr>
<tr>
<td>b2- N₀P₀</td>
<td>430</td>
<td>581*</td>
</tr>
<tr>
<td>b3- N₀P₀</td>
<td>488**</td>
<td>711***</td>
</tr>
<tr>
<td>b4- 30 Mg ha⁻¹ manure</td>
<td>416</td>
<td>656***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a2: inoculated</th>
<th>Amount of CP (kg ha⁻¹)</th>
<th>% as referred to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1- N₀P₀</td>
<td>390</td>
<td>564*</td>
</tr>
<tr>
<td>b2- N₀P₀</td>
<td>432*</td>
<td>632***</td>
</tr>
<tr>
<td>b3- N₀P₀</td>
<td>533***</td>
<td>742***</td>
</tr>
<tr>
<td>b4- 30 Mg ha⁻¹ manure</td>
<td>455*</td>
<td>685***</td>
</tr>
</tbody>
</table>

![Figure 3 Amount of crude protein (CP) distribution](image)

By analyzing the influence of inoculation and fertilization on alfalfa fiber content and relative feed value, it appears that inoculation had little influence on these indicators of quality feed. The results confirm the research of other authors who have come to similar conclusions, in conditions close to those present study (Hristozkova M. et al., 2009; Stevoviš Vladeta et al., 2010).

Organic fertilization showed a statistically positive effect on the content of plant leaves and stems in NDF and ADF. The same trend was manifested in the case of mineral fertilization strains except the ADF content, where the influence was reduced at the first and third cut (table 7, 8).

Relative feed value of alfalfa plants and leaves was negatively influenced and very significant to all of fertilization treatments (table 9). These trends, in terms of quality alfalfa under the influence of organic and mineral fertilization, confirming the results of research by other authors (Showalter J., 2000; Ketterings Q.M. et al., 2008).

The forage obtained from the first and third can be classified as prime class (1), while the forage from the second cut can be classified as class 2.
CONCLUSIONS

The first year alfalfa, inoculation resulted in no significant differences in productivity and quality of alfalfa, because the farm Ezăreni conditions (soil containing calcium by 3 %) *Rhizobium meliloti* Dangeard symbiotic bacteria has a sufficient presence in the soil.

Research has shown that the leaves/stems ratio was different, depending on the experimental plot analyzed and the number of cut. At each of the three cuts, the leaves/stems ratio was better (meaning a higher percentage of leaves), for the unfertilized and organically fertilized plots

Following results were found, although fertilization positively influenced the content of the leaves and stems in CP, CP content in plants was lower in fertilized variants, do to leaves/stems ratio, negatively affected by fertilization. Although plants CP content in the fertilized variants was lower, the amount of CP was higher due to higher yields obtained from these plots.

Fertilization showed a statistically positive effect on the content of plant leaves and stems in NDF and ADF (lower values of these indicators).
Relative feed value of alfalfa plants and leaves was influenced distinctive significantly and very significantly in all of fertilization plots.

The forage obtained from the first and third can be classified as prime class (0), while the forage from the second cut can be classified as class 2.

REFERENCES

Delgado I., Andueza D., Muñoz F. and Martinez N., 2001 - Effect of nitrogen fertilisation on alfalfa (Medicago sativa L.) regrowth and production, Options Méditerranéennes. Série A: Séminaires Méditerranéens Vol 45, p. 141-143

Dragomir Carmen and Moisuc A., 2007 - Bacterial inoculation effect upon yield capacity in alfalfa and orchard grass, Lucrări Ştiinţifice: Facultatea de Agricultură USAMVB Timişoara Vol. 38, p. 275-278

Kiraz A.B., 2011 - Determination of Relative Feed Value of Some Legume Hays Harvested at Flowering Stage, Asian Journal of Animal and Veterinary Advances, Vol. 6, p. 525-530

Moga I., Schitea Maria and Mateias M., 1996 - Plantefurare, Editura Ceres, p. 9-149

Stevović Vlada, Lazarević B., Đurović D., Beković D. and Tomić D., 2010 - Biomass yield and quality of alfalfa cultivars grown on pseudeogley soil, 45th Croatian & 5th International Symposium on Agriculture, p. 930-934

Varga P., Moga I., Kellner E. and Ionescu Maria, 1973 - Lucerna, Editura Ceres, p. 34-35, 135-136