EVALUATION OF ROMANIAN MAIZE LOCAL LANDRACES FOR INCREASING THE EFFICIENCY OF THEIR USE IN BREEDING **PROGRAMS**

Marius MURARIU¹, Danela MURARIU², Domnica Daniela PLACINTA², Constantin LEONTE³, Danut-Petru SIMIONIUC³, Ana LEAHU⁴, Marcel AVRAMIUC⁴

E-mail: marius_murariu2005@yahoo.com

Abstract

At present there can be noticed a main interest of plant genetic resources users for accessing information related to characterization and evaluation descriptors. Maize genetic resources represented by local populations originating from different areas, represent important useful genes sources for improving species. Their e is possible due to studies and comprehensive measures which can lead to the maintenance of biodiversity and increase its efficiency. The paper presents the results of characterization and evaluation of a total of 61 local landraces with cold test index >80%, selected from a total of 300 studied local landraces. These local landraces can be useful genes sources for maize breeding at low temperature, being a main trait for maize cultivation in wetter and colder areas in Romania.

The study shows a high diversity for most of the morphological characterization descriptors of the plant, ear and kernel, physiological evaluation at low temperature resistance of the plantlets, precocity and biochemical evaluation for kernels quality.

In order to obtain information, at intervariety level, for maize local landraces studied, molecular characterization was performed by RAPD method (random amplified polymorphic DNA).

Many maize local populations with values of characterization and evaluation descriptors of real interest were emphasized. Utilization of these local landraces as starting material can lead to the identification of useful genes sources for improvement of important agronomic characters of maize (yield capacity, precocity, resistance to low temperatures, quality and genetic integrity).

Key words: maize local landraces, cold test index, protein content, RAPD method

Reconsidering of the evaluation work, documentation and use of maize genetic resources represented by old local landraces, no studied or inadequately studied, represents an necessity, at the national and international level. Not incidentally, the work report of the ECPGR Maize Working Group Meeting Rome, Italy (1996) have noted two major needs collaboration on maize genetic resources:

- Identify of old local populations, valuables for their agronomic characters;
- Establish a joint prebreeding programs.

The maize local landraces are distinguished by a high capacity for adaptation and physiological characteristics specific to certain areas, as well as high yield capacity and the its quality attributes (Moșneagă and collab., 1957; Ulinici, 1961; Gologan, 1965; Muresan, 1972; Cristea, 1972 b, 2006; Suba, 1973; Căbulea and collab., 1975;

Hallauer and Miranda, 1981; Murariu and collab 1999, 2001, 2010).

The Romanian maize local landraces are very different as the ecological conditions in our country under the influence of which were formed and over which were superimposed the effects of empirical selection made by thousands of growers. each in its own way. Although, the maize landraces are very heterogeneous, they are grouped into distinct races, each occupying a certain area (Cristea, 2006).

In the breeding programs the maize local populations could have a main interest, especially as sources of useful genes for environmental adapting, agronomic, physiological traits and valuable qualities.

At present, the unanimous opinion of the specialists is that genetic resources represented by the local maize populations, coming from different areal, represents important reserves of useful genes

³ University of Agricultural Sciences and Veterinary Medicine Iaşi

¹ Agricultural Research and Development Station of Suceava

² Suceava Genebank

⁴ University of Suceava

for breeding of the species. The exploitation of these reserves becomes possible through studies and complex measures that can lead to the keeping of biodiversity and the increase of efficiency of using it.

Important collections of maize old landraces are kept in the gene banks. Thus, the Suceava Genebank, holds a rich collection of over 4300 samples collected from sub mountain and mountain areas of Romania.

A comprehensive assessment of these genetic resources could be achieved through morphological, physiological, biochemical and molecular characterization (Karp and collab., 1995, 1997, 1998, Welsh and collab., 1990, Williams and collab.,1990, Pejic 1998), subordinate of an important purpose, namely, the highlight of the compelling value of maize local populations in the genetic background with breeding value and practical use of these genetic resources for of sustainable agriculture promoting opportunity results as a consequence of realizing the use, especially that of local resources, is highly reduced. That is why there is a great need of reconsidering the attitude towards this situation, especially through complex studies that could highlight the useful genetic potential of these materials

In all breeding programs the germplasm play an important role both in creating of hybrids and lines, and in maize landraces improving. A valuable germplasm has high genetic variability and its performance.

All these are scientific reasons that were the basis for a complex evaluation system achievement, able to reveal genetic variability and lead to the identification of some valuable genotypes in the main breeding directions.

MATERIAL AND METHOD

A comprehensive morpho-physiological, biochemical and molecular assessment of important germplasm fund, represented by a total of 300 maize local landraces, was made possible through a national project with title "Increase of the Use Efficiency of a Main Local Maize Germplasm Fond from Romania", grant no 52127/2008 (2008-2011).

Characterization of local maize landraces was done in an appropriate experiment system, based on morpho-physiological descriptors edited by International Plant Genetic Resources Institute (BIOVERSITY).

We have analyzed 12 morphological descriptors of plant architecture: plant height, insertion height of the main ear, total numbers of leaves per plant, number of leaves above the uppermost ear, leaf length, leaf width above the

uppermost ear, architectural elements of pannicle, maximum and minimum diameter of the stem, and 11 morphological descriptors for ear and grain: ear length, maximum and minimum diameter of the ear, number of kernel rows, no of kernel per row, length, width and thickness of grains, grain weight/ear and 1000 kernel weights.

Physiological descriptors are particularly important for maize destined for cultivation in wetter and colder areas. For this reason, it was considered appropriate to highlight the following physiological descriptors: the resistance of maize plantlets at low temperatures, plant growth vigor and sum of the temperatures degrees to the silking data, as a proxy indicator of precocity.

In the laboratory we determined the resistance of maize plantlets at low temperatures in 300 maize landraces. Assessment was done by the method Debbert cold test index determination (1988), cited by Rotari and Comarov (1992). The 61 maize landraces with values of cold test index > 80%, were selected for analyzing of protein content, presence on the kernels of *Fusarium spp.* and molecular characterization.

For the morphological and physiological calculated descriptors were the following estimators: the arithmetic average (x), the variation amplitude. variance (s^2) and variation coefficient(s%) (Ceapoiu, 1968). The dispersion of the results concerning the morpho-physiological descriptors of studied maize local landraces, gives a conclusive analysis on the existing genetic diversity within this germplasm, insufficiently exploited. lt was considered appropriate determining the corn resistance to infection with mycotoxins produced by Fusarium moniliforme and Fusarium graminearum. This study was achieved by using a scoring system described by Naumova (1972), after that, the attack degree, using a specific formula (Booth, 1971) was determined.

Biochemical characterization refers to the determination of sugars content in maize plantlets which were treated with low temperatures (Buyse and Merckk, method) and protein content of kernels (Kjeldahl method).

Molecular characterization of the 61 maize landraces, very resistant to low temperatures was realized by RAPD method At the beginning, it was necessary the genomic DNA extraction. For this purpose we used young plants of maize accessions. Leaves collected of each variant were placed in plastic tubes (previously marked) and immediately frozen in liquid nitrogen. The samples were stocked in the freezer at-20°C. For DNA extraction **CTAB** method was (hexadecyltrimethilammonium bromide) modified by Doyle and Doyle in 1987. Determination of concentrations usina NanoDrop fluorospectofotometer 3300 type, was performed. After reading the concentration of DNA, necessary dilutions PCR mix, were made. For RAPD method, DNA solution concentration should be 5 ng / µl.

For determination the genetic diversity of 61 maize landraces, a total of eight RAPD primers was used, (table 1) which were selected after initial screening achievement on 20 primers. Thus, we chose only those primers which gave polymorphic fragments in maize landraces. PCR reaction in a volume of 20 µl, was performed, in which were pipetted: 5 ng genomic ADN, 10 μM of dNTP, 25 mM MgCl₂, 5pmol/ml decamer primer (Roth). 0.1 units Taq DNA polymerase (Go Taq polymerase -Promega) and 10 x reaction buffer. Amplification was performed in two thermocyclere: Corbett and Eppendorf. The amplification was performed in the following conditions: initial denaturing for 3 minutes at 95°C, followed by 45 amplification cycles, each of them having the following steps: denaturing: 1 min at 93°C, attaching of the primers on 1 min at 34°C, and extension on 1 min at 72°C. The last step was the final extension on 10 min at72°C.

Primers used in the PCR reaction generating reproducible polymorphisms

No.	Primer	Sequence (5'-3')
1.	ROTH A15	TTC CGA ACC C
2.	ROTH A16	AGC CAG GCA A
3.	ROTH A17	GAC CGC TTG T
4.	ROTH B02	TGA TCC CTG G
5.	ROTH B08	GTC CAC ACT C
6.	ROTH B13	TTC CCC CGC T
7.	ROTH B14	TCC GCT CTG G
8.	ROTH B16	TTT GCC CGG A

The amplification products in agarose gel electrophoresis were separated at concentration of 2%, and a visualization of fragments was performed by coloring with ethidium bromide, concentration of 0.5 μ l / ml.

The analyses of images derived from the RAPD analysis was performed using the program RFLPScan 2. We selected, marked and used in the calculation only those bands that were clear and did not raise any question about the presence or absence of them. Data provided by the program

RFLPscan were processed using a program NTSYS pc. 7.

Grouping of the genetic variants on related groups, was performed with program, which use as variables the similarity coefficient Lei and Ni and UPGMA (unweighted pair-group average method arithmetric).

RESULTS AND DISCUSSIONS

Results on the morphological, physiological and biochemical characterization of the 300 maize landraces studied, can be found in the *online* database at the web address:

 www.biomaize.ro, which includes information concerning the value of biological material with useful genes in the main directions of improvement.

In this study, 23 morphological descriptors for characterization of plant architecture, ear and grain were determined. For emphasizing of the genetic variability of maize local populations the following dispersal indexes were calculate: mean value, amplitude of variation, variance and coefficient of variation (*table 2*). Interpretation of the results in this regard is based on the coefficient of variation as an expression of diversity of the analyzed biological material. There were high coefficients of variation for: insertion height of the main ear, number of primary and secondary branches of panicle and grain weight per ear.

The middle values of variation coefficient were recorded for descriptors: plant height, the total number of the leaves per plant, number of leaves above the uppermost ear, leaf width above the uppermost ear, peduncle length of the panicle, the maximum and minimum diameter of the stem, ear length, minimum and maximum diameter of the ear, number of kernel rows, no of kernel per row and 1000 kernel weights.

Table 2

Morphological and physiological descriptors estimators values on 61 maize local landraces characterized in

Suceava in year 2009

Estimators	Plant height (cm)	Insertion height of the main ear (cm)	numbers of leaves	Number of leaves above the uppermost ear	Leaf length (cm)	Leaf width (cm)	Panicle length (cm)	Peduncle length (cm)	Number of first order branches	Number of second order branches	Maximum diameter of the stem (mm)	Minimum Diameter of the stem (mm)	
Plant descriptors X 194,78 64,60 10,53 6,02 70,64 8,37 61,54 24,37 13,00 2,11 18,3													
X	194,78 64,60 10,53 6,02 70,64 8,37 61,54 24,37 13,00										18,31	9,72	
Max.	260,00	109,00	14	8,00	89,00	11,00	95,00	67,00	29,00	11,00	32,00	14,60	
Min.	129,00	27,00	7	3,00	10,00	0,00	44,00	13,00	2,00	0,00	12,00	6,80	
S ²	447,03	220,97	1,65	1,11	75,20	1,18	35,57	21,97	19,58	2,69	5,10	2,0	
S%	10,85	23,02	12,16	17,44	12,27	13,02	9,68	19,24	34,00	77,73	12,34	14,51	
Estimators	Ear length (cm)	Maximum diameter of the ear (mm)	Minimum diameter of the ear (mm)	No of kernel rows	No of kernel/row	Kernel length (mm)	Kernel width (mm)	Kernel thickness (mm)	Kernel weight/on ear	1000 kernel weight (g)	Coldtest index (%)	Protein content (%)	
Ear and kernel descriptors													
X	17,01	42,40	34,42	11,87	34,57	9,85	8,87	4,53	121,9	313,90	86,2	10,77	
Max.	22,30	52,00	43,70	18,00	45,00	11,40	11,20	5,50	221,0	492,00	94	12,08	
Min.	9,70	26,10	24,50	8,00	26,00	7,90	5,60	3,40	52,0	144,00	81	9,67	
S²	5,58	18,49	14,24	3,67	19,7	0,62	0,99	0,2	1017,4	3347,07	12,9	0,60	
S%	13,87	10,14	10,95	16,18	12,84	7,99	11,22	9,87	26,2	18,43	4,16	7.15	

Sum of the temperatures degrees as a proxy indicator of precocity, emphasizes important differences between local landraces. Very early, early, middle and tardives maize populations were distinguished.

The cold test index, which was determined in laboratory, attests a different resistance to low-temperature of maize plantlets. The coefficient of variation for this trait is lower in the 61 populations as a result of their selection of the total number of 300. However, the determinations made at all germplasm, a very large differentiation of maize local populations were observed. These populations can be grouped in resistant, middle resistant and susceptible maize populations to low temperatures (www. biomaize.ro).

The maize populations shows a protein content between 9,67 and 12,08%. We observed that there

are many maize local landraces with higher protein content than the Romanian hybrid Montana (11,12%). The variation coefficient of this trait is low because, generally the protein content from the kernels varied in the reduced limits.

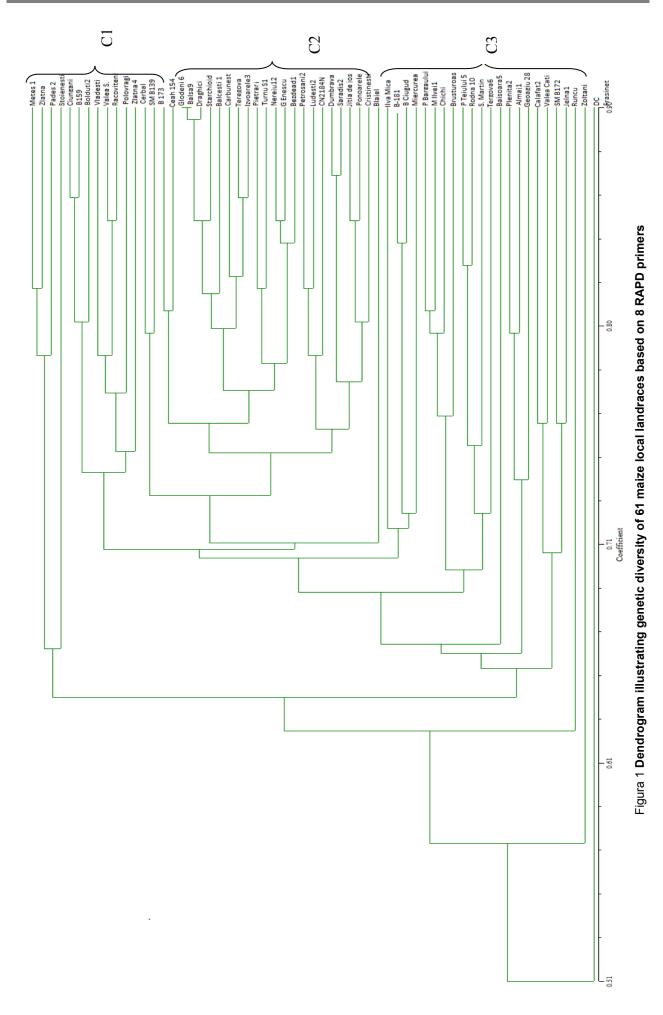
The estimation of the kernels resistance to the infection with mycotoxins produced by *Fusarium spp.* shows a high variability of accessions, having the percentages of infection with values between 0 and 20% (*tab. 3*), Estimation of *Fusarium attack* according Booth, 1971, shows the following attack levels: 1-2% - negligible attack, 2-5% - low attack, 5-10% -low to middle attack, 10-20%- middle attack, 20-30% - middle to intense attack, 30-50% -intense attach and 50% - very intense attack. In this study there is a middle attack of *Fusarium moniliforme* and a low attack of *Fusarium graminearum*.

Table 3 Infection percentage of the *Fusarium spp.* at the studied accessions

		•	_					
No. crt	Accession number	Infection percentage (%)	No. crt	Accession number	Infection percentage (%)	No. crt	Accession number	Infection percentage (%)
1	SVGB-1357	0	22	SVGB-1399	2	43	SVGB-7800	4,2
2	SVGB-1790	0	23	SVGB-3599	2	44	SVGB-5226	4,2
3	SVGB-5483	0	24	SVGB-5172	2	45	SVGB-3991	4,2
4	SVGB-8012	0	25	SVGB-1015	2,2	46	SVGB-7754	4,2
5	SVGB-9577	0	26	SVGB-1640	2,5	47	SVGB-7820	4,2
6	SVGB-9591	0	27	SVGB-3973	2,5	48	SVGB-5354	4,5
7	SVGB-9920	0	28	SVGB-9887	2,5	49	SVGB-12488	4,5
8	SVGB-7624	0,2	29	SVGB-11584	2,5	50	SVGB-7900	5
9	SVGB-7701	0,7	30	SVGB-4813	3	51	SVGB-1806	5,2
10	SVGB-8022	0,7	31	SVGB-9807	3	52	SVGB-8865	5,7
11	SVGB-3764	1	32	SVGB-11575	3	53	SVGB-5188	5,7
12	SVGB-4005	1	33	SVGB-1244	3,2	54	SVGB-9800	6,2
13	SVGB-5219	1	34	SVGB-1176	3,5	55	SVGB-11231	6,5
14	SVGB-595	1,2	35	SVGB-5226	3,5	56	SVGB-3722	6,7
15	SVGB-3971	1,2	36	SVGB-8026	3,5	57	SVGB-7750	7,5
16	SVGB-7745	1,2	37	SVGB-952	3,7	58	SVGB-4784	17
17	SVGB-9919	1,5	38	SVGB-981	3,7	59	SVGB-1423	17
18	SVGB-9966	1,5	39	SVGB-5168	3,7	60	SVGB-8043	20
19	SVGB-7645	1,7	40	SVGB-7811	4	61	SVGB-7783	20
20	SVGB-499	2	41	SVGB-16145	4			
21	SVGB-845	2	42	SVGB-7282	4,2			

Majority of accessions are infected with *Fusarium moniliforme*, except accession SVGB-7900 which is infected with *Fusarium graminearum*.

For determination of the genetic similarity on 61 local landraces, 8 RAPD primers were used. It results 91 bands with dimensions between 74 and 1687 bp, from which, 86 were polymorphic.


The smallest number of fragments amplified was 6 (ROTH A15) and the largest number of fragments was 17 (ROTH B13 and B14). As can be seen in table 4, the polymorphic bands level at the 8 used primers in the RAPD analysis ranged from 83% (ROTH A15) and 100% (ROTH A16, A17 and B08).

7 bp, from which, 86 were polymorphic.

Table 4

Numbers of amplified fragments, numbers of polymorphic bands and polymorphism percentage for each used primer of RAPD analyses

Primer	Number of	Polymorphic	The dimensions of	Polymorphism
	amplified fragments	fragments	fragments(bp)	percentage (%)
ROTH A15	6	5	373-972	83%
ROTH A16	10	10	376-1058	100%
ROTH A17	7	7	204-873	100%
ROTH B02	10	9	253-964	90%
ROTH B08	14	14	74-1281	100%
ROTH B13	17	16	413-1678	90%
ROTH B14	17	16	283-1397	94%
ROTH B16	10	9	351-1207	90%

2
Φ
₫
a

l able 5	Altitud	e (m)	353	624	929	480	480	223	299	464	935	268	351	637	838	202	725	200	601	628	436	551	140	194	480	43	516	628	355	289	969	15	
	Collecting site		Cluj, Cluj-Napoca	Cluj, Dumbrava	Cluj, Saradis	Vrancea, Jitia de Jos	Mehedinti, Ponoarele	Botosani, Cristinesti	Sibiu, Blajel	Bistrita Nasaud, Ilva Mica	Harghita, Tulghes	Alba, Blaj, Ciugud	Mures, Miercurea Nirajului	Bistrita Nasaud, Prundu Bargaului	Bistrita Nasaud, Magura Ilvei	Covasna, Chichis	Bacau, Brusturoasa	Neamt, Poiana Teiului	Bistrita Nasaud, Rodna	Harghita, Sanmartin	Caras-Severin, Teregova	Cluj, Baisoara	Dolj, Plenita	Dolj, Almaj	Hunedoara, Geoagiu	Dolj, Calafat	Cluj, Valea lui Coti, Tureni	Harghita, Satu Mare	Bistrita Nasaud, Jelna	Gorj, Runcu	Covasna, Zoltan	Calarasi, Frasinet	
	Accession		CN-21-84 C	Dumbrava	Saradis2	Jitia de Jos	Ponoarele	Cristinesti	Blajel	Ilva Mica	B181	Blaj Ciugud	Miercurea	P. Birgaului	M. Ilvei 1	Chichis	Brusturoasa	P. Teiului 5	Rodna 10	Santmartin	Teregova 6	Baisoara 5	Plenita 2	Almaj 1	Geoagiu 28	Calafat 2	Valea lui Cati	SM B172	Jelna 1	Runcu	Zoltan	Frasinet	
RAPD analysis	Accession	number	SVGB-1806	SVGB-911	SVGB-7820	SVGB-1357	SVGB-7645	SVGB-11575	SVGB-9919	SVGB-499	SVGB-952	SVGB-9920	SVGB-1179	SVGB-7282	SVGB-3599	SVGB-1015	SVGB-8865	SVGB-11231	SVGB-3722	SVGB-9966	SVGB-5172	2886-B5/S	SVGB-4005	SVGB-4023	SVGB-1640	SVGB-4813	SVGB-7798	SVGB-9577	SVGB-14153	SVGB-5874	SVGB-1244	SVGB-16145	
ces used for R	Cluster	number	C2	C2	C2	C2	C2	C2	C2	C3	C3	C3	C3	ొ	S	క	క	ဌ	ဌ	ဌ	C3	C3	C3	ဌ	C3	C3	C3	ຮ	C3	C3	C3	C3	
ocal landra	Altitude	(m)	490	009	300	089	393	125	405	400	400	444	574	009	297	628	125	450	282	478	200	800	944	286	436	220	343	80	200	153	610	400	009
Romanian maize local landraces used for RAPD analysis	Collecting site		Alba, Metes	Alba, Zlatna	Gorj, Pades	Valcea, Stoenesti	Hunedoara, Ciungani	Satu Mare, Satu Mare	Cluj, Boldut	Arges, Vladesti	Arges, Valea Silistii	Buzau, Racoviteni	Gorj, Polovragi	Alba, Zlatna	Hunedoara, Cerbal	Harghita, Satu Mare	Satu Mare, Satu Mare	Neamt, Ceahlau	Gorj, Glodeni	Hunedoara, Balsa	Arges, Draghici	Prahova, Starchiojd	Cluj, Balcesti	Gorj, Carbunesti	Caras-Severin, Teregova	Prahova, Izvoarele	Valcea, Pietrari	Mehedinti, Drobeta-Turnu Sev	Vrancea, Nereju	Botosani, George Enescu	Dambovita, Bezdead	Hunedoara, Petrosani	Hunedoara, Ludestii de Sus
	Accession name		Metes1	Zlatna	Pades2	Stoenesti	Ciungani	B159	Boldut2	Vladesti	Valea Silistei	Racoviteni	Polovragi	Zlatna 4	Cerbal	SMB139	B173	Ceah 154	Glodeni6	Balsa 9	Draghici	Starchiojd	Balcesti 1	Carbunesti	Teregova	Izvoarele 3	Pietrari	Turnu S1	Nereju 12	G. Enescu	Bezdead 1	Petrosani2	Ludesti2
	Accession	number	SVGB-8012	SVGB-8022	SVGB-7900	SVGB-7701	0086-B5/S	SVGB-981	SVGB-7811	SVGB-7750	SVGB-7754	SVGB-8043	SVGB-5483	SVGB-8026	SVGB-9807	SVGB-9591	SVGB-845	SVGB-595	SVGB-5880	SVGB-1399	SVGB-7745	SVGB-5219	SVGB-3973	SVGB-3971	SVGB-5168	SVGB-5226	SVGB-5557	SVGB-4019	SVGB-3764	SVGB-11584	SVGB-7624	SVGB-1790	SVGB-1423
	Cluster	number	5	5	C1	C1	C1	C1	C1	C1	C1	C1	5	5	C1	5	2	5	C5	C5	C2	C2	C5	C5	C2	C2	C2	C2	C2	C2	C5	C2	C2

Based on analyses of data obtained genetic similarity between the analyzed genotypes was calculated resulting dendrogram (fig. 1).

The 61 genotypes evaluated fell into 3 clusters (*fig.1*). The groups formed by RAPD analysis are not correlated with collecting site and altitude (tab. 5).

AKNOWLEDGEMENTS

Research was supported by The National Centre for Program Management (CNMP), Romania, for the grants awarded (grant no.52127/2008).

BIBLIOGRAPHY

- Booth, C., 1971 Methods in Microbiology. In Booth C. (Ed.) Vol. 4. Academic Press London, New-York.pag. 49-94.
- Buyse, J., Merckk R., 1993 An Improved Colorimetric Method to Quantify Sugar Content of Plant Tissue, J. Exp. Bot. (1993) 44(10): 1627-1629.
- Ceapoiu, N., 1968 Metode statistice aplicate în experiențele agricole și biologice. Editura Agro-Silvică, București.
- **Cristea, M., 1972 -** *Prolificitatea unor populații locale deporumb din Bucovina,* Probl. Genetică teoretică și aplicată, vol. II, nr. 3 208-217.
- Cristea, M., 2006 Monografia porumbului, Edit. ASAS Bucuresti.
- Căbulea I. și colab., 1975 Germoplasma locală de porumb din Transilvania și utilizarea ei în lucrările de ameliorare. Probleme de Genetică teoretică și aplicată, vol. VII, nr. 1 57-90.
- Doyle, J. J., Dickson E. E., 1987 Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715-722.
- Doyle, J. J., Doyle, J. L., 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
- Gologan, I., 1965 Valoarea unor populații locale de porumb din Moldova, ca material inițial de ameliorare. Teză de doctorat, IANB București.
- Hallauer, A.R., Miranda, J.B., 1981 Quantitative Genetics in Maize Breeding lowa State University. Press Amer.
- KARP, A., EDWARDS, K.J., 1995 Molecular techniques in the analysis of the extent and distribution of genetic diversity. Report of an IPGRI Workshop, 9-11.Oct. 1995 in Rome, Italy. pag. 11-22.

- Karp, A., Edwards, K.J., Bruford, M., Vosman, B., Morgante, M., Seberg, O., Kremer, A., Boursot, P., Actander, P., Tautz, D., Hewitt, G., 1997 -Newer molecular technologies for biodiversity evaluation: opportunities and challenges. Nature Biotechnol. 15, pag. 625-628.
- Karp, A., Isaac, P.G., Ingram, D.S., 1998 Molecular tools for screening biodiversity. Chapman &Hall, London, pag. 498.
- Murariu, Danela, Murariu, M., Ivanovici, Alecsandru Rotari, 1999 - Aspecte privind rezistenţa plantulelor de porumb la temperaturi scăzute , Analele ICCPT Fundulea vol. LXVI, 1998 pag. 315-320.
- Murariu, Danela, 2001 Evaluation and utilization of maize local landraces from Carpathian Mountains in the Romanian Maize Breeding Programs, Simpozionul Stiinţific de Agronomie, Iaşi 25-26 octombrie, 2000, CD-ROM.
- Murariu, M., Murariu, Danela, Has, Voichita, 2010 Maize local landraces used like prebreeding material for simultaneous improvment of main agronomic traits, Lucrări ştiinţifice vol. 53, Nr. 2/2010, seria Agronomie.
- Moșneagă, V., Velican, V., Priadcencu, Al., 1957 Ameliorarea porumbului, Porumbul- Studiul monografic, Editura Academiei RPR.
- Mureşan, A., Crăciun, T.I., 1972 Ameliorarea specială a plantelor Editura Ceres, Bucureşti, pag.279.
- Naumova, A., 1972 Testing of seeds for fungus and bacterial infections. Keler Press Jerusalim.
- Pejic, I., Ajmone-Marsal, P., Morgante, M., Kozumplick, V., Castiglioni, P., Taramino, G., Motto, M., 1998 Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor. Appl. Genet. 97, pag. 1248-1255.
- Rotari, A., Comarov, G., 1992 Opât ispolizovania metodov o_enki seleck_ionogomateriala kukuruzî na holodostoikosti. Sbornik Sozdanie gibridov kukuruzî i sorgo. Editura "_tiin_a": 101-108.
- Suba, T., 1973 Valoarea populațiilor de porumb din vestul țării ca material inițial în lucrările de ameliorare. Teză de doctorat, Instit. Agron. Timișoara, 183 p.
- Ulinici, Victoria, 1961 Valoarea populațiilor de porumb din centrul și nordul Munteniei ca material inițial de ameliorare. An ICCA, XXIX, B.
- Welsh, J., Mcclelland, M., 1990 Fingerprinting genoms using PCR with arbitrary primers. Nucleic Acids Res. 18, pag. 7213-7218.
- Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. 1990 DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, pag. 6531-6535.