THE POSSIBILITY OF REDUCING THE NITROGEN FERTILIZERS BY USING SOME GRAMINEOUS AND PERENNIAL MIXTURES IN THE CONDITIONS OF NORTHERN MOLDAVIA

Constantin SAICU¹

E-mail: saicuconstantin@yahoo.com

Abstract

The studies made in the period 2009-2010 underlined the necessity of using some bigger doses of nitrogen at timothy grass in order to obtain some bigger and qualitative productions. In order to make more efficient the fodder production it's necessary to create mixtures of perennial gramineous and leguminous. The timothy grass is associated very well with the clover ($Trifolium\ pratense$), this mixture has been used for a long time in Bucovina. The experience with different proportions of the two species on different doses of nitrogen fertilizers highlights the high production of green mass and dry substance with a moderate usage of nitrogen. The best results were obtained at the clover mixture in the ratio of 50-75%, with the timothy grass in the ratio of 25-50% on a nitrogen agricultural background between N_{30} - N_{75} .

Key words: mixture, nitrogen, green mass, dry substance, timothy grass, clover

The timothy grass(*Phleum pretense*) and the clover (Trifolium pretense) are part of the most productive fodder grain category, being very used as components in the cultivated meadows, but also as hay (Moga et al 1983, Varga 1993). The pure culture of timothy grass is less and less used because of the high need of nitrogen fertilizer, while in the mixture with the clover, are obtained larger productions, the feed is better than clover or timothy separate and the nitrogen consumption decreases considerably. (Moga 1968, Moga et al 1996). The researches made in different cities and stages underlined the superior rank of the mixtures of the two species in comparison with their separate use (Moga et al 1983, Zamfir Ileana 2004). The researches made in pedoclimatic areas show that for this type of mixture it's recommended to be applied a dose of 50-80 kg/ha in the first year and N_{80} - N_{150} kg N/ha in the following years, according to the type of soil and proportion between the components, the minimum dose is of at least 70% (Moga et al 1983, Moga et al 1996).

MATERIAL AND METHOD

The researches were made in the period 2009-2010 at the Agricultural Research Development Station Suceava, on a leachate cernoziomoid soil (faeoziom), having the volumetric weight between 1.43-1,49 t/c.m. on the depth of 1.5 m, weak acid (PH in KCI- 5.6), with a medium content of humus — 3%, an environment

supplied in phosphorus and potassium. The experience presented in this paper was bifactorial type 4 x4, four repetitions, having the following factors:

Factor A: species

a 1- timothy grass 100%

a 2- timothy grass 75% + clover 25%

a 3- timothy grass 50% + clover 50%

a 4- timothy grass 25% + clover 75%

Factor B: nitrogen fertilizers

 $b 1 = N_0$

 $b2 = N_{50}$

 $b3 = N_{75}$

 $b4 = N_{100}$

It was used Rarau timothy grass variety, and for the clover it was used Flora variety. The green mass and dry substance production was expressed in t/ha, and the participation of species in percentage was determined by using the planimetric method.

The calculation and the interpretation of results was made by the variation analysis.

The climatic conditions from the research period are presented in *table 1*, from where it results that the annual average temperature was of 9.1°C in 2009 and 8.4°C in 2010, in comparison to 7.8°C that is represented by the multiannual average.

The average of the monthly temperatures during the three years was higher than the multiannual average in 10 months, with values ranged between 0.4-5.0°C and in two months, respectively for January and October was smaller with 0.7-1.1 °C.

¹ Agricultural Research Station Development of Suceava

So from the thermal point of view we can say that those two years were very hot in comparison to the multiannual average.

The rainfall recorded in 2009 was of 877.6 mm, and in 2010 of 763.4 mm, and the value of the multiannual average is of 586.8 mm. The greatest amounts of rainfall were registered in May-117.4 mm, June 196.2 mm and July 116.4 mm, which were valued very well by plants. In both years

there is a more arid period when the vegetation comes back to life in spring, respectively in March and April, when the monthly values are smaller than the multiannual average.

Taking into account the facts presented above, it results that the fodder plants benefited from favorable conditions of development having enough water and temperature.

Table 1

The climatic conditions from the research period 2009-2010, Suceava

Specification	I	II	III	IV	V	VI	VII	VIII	IX	Χ	ΧI	XII	Average or total
	Monthly average temperatures ⁰ C												
2009	-2,6	-1,2	2,3	10,8	14,7	17,7	20,4	18,9	15,7	8,7	5,5	-2,3	9,1
2010	-7,0	-3,5	2,6	9,4	15,1	17,9	21,1	21,4	13,6	5,9	8,0	-3,8	8,4
Average 2009-2010	-4,8	-2,4	2,4	10,1	14,9	17,8	20,8	20,2	14,6	7,3	6,8	3,1	8,8
Multiyear average	-4,1	-2,9	1,2	8,0	13,7	16,9	18,4	18,3	14,2	8,4	2,4	-1,9	7,8
Standard deviation <u>+</u>	-0,7	+0,5	+1,2	+1,9	+1,2	+0,9	+2,4	+1,9	+0,4	-1,1	+4,4	+5,0	+1,0
				•		Rainfall –	mm	•	•			•	
2009	45,3	19,0	29,2	8,4	82,2	154,9	120,8	30,8	40,2	62,6	18,6	37,1	649,1
2010	31,4	35,2	28,6	32,0	152,7	237,4	112,0	72,2	63,5	43,1	38,0	31,5	877,6
Average 2009-2010	38,3	27,1	28,9	20,2	117,4	196,2	116,4	51,5	51,9	52,9	28,3	34,3	763,4
Multiyear average	24,2	25,6	36,2	48,2	80,2	93,6	88,6	62,8	40,8	29,5	30,6	26,5	586,8
Standard deviation <u>+</u>	+14,1	+1,5	-7,3	-28,0	+37,2	+102,6	+27,8	-11,3	+11,1	+23,4	-2,3	+7,8	176,6

RESULTS AND DISCUSSIONS

The green mass production obtained in the two years of experimenting is presented in *table 2*, and it shows us that in the 1st year (2009) the production was modest, being between 13 700 kg/ha for the pure timothy grass culture, which wasn't fertilized with nitrogen and 22 000 kg/ha for the mixture of timothy grass 50%+ clover 50% fertilized with N_{100} . In the second year (2010) the production level was between 11 108 kg/ha for the timothy grass pure culture, unfertilized with nitrogen and 53 584 kg/ha for the mixture of timothy grass 25% and clover 75% fertilized with N_{100} .

By analyzing the influence of the two factors, we find out that through the addition of 25%, 50% and 75% clover it can be remarked an increase which is statistically insured towards the pure culture of timothy grass. The average of the two years shows us that for the timothy grass pure culture was realized an average production of 19 263 kg/ha, by the addition of 25% clover in mixture, so it was realized an increase of production of 61% (11 716 kg/ha) when the addition of clover increased from 50 and 70% in mixture, the increase of production was over 80%.

The nitrogen fertilizers have determined some gains which were statistically insured when applying the 75 kg/ha and respectively 100 kg/ha nitrogen active substance.

The production of dry substance is presented in *table 3*, and shows us a modest level of the dry substance in the 1st year, and for the 2nd year, the production has increased substantially being ranged between 2149 kg/ha for the pure culture of timothy grass unfertilized with nitrogen and 8719 kg/ha s.u. for the mixture of 75%timothy grass + 25% clover fertilized with N₁₀₀. The average of the two years indicated increases insured statistically for all the experimental varieties in comparison with the witness variety.

By the addition of 25% clover in the mixture, the average of the dry substance increase was 1907 kg/ha (52%) and for the increase of 50%clover and respectively to 75%, the production increase remained approximately the same.

In exchange, the nitrogen fertilizers have determined increases of 18% (795 kg/ha s.u) at N_{100} of 25% (1078 kg/ha s.u) at N_{75} and 32 % (1378 kg/ha s.u) at N_{100} .

From the economical point of view, the best variant is composed from 50% timothy grass \pm 50% clover with a nitrogen dose of N_{50} .

Table 2
The green mass production obtained for different mixtures of timothy grass and clover on different nitrogen levels (2009-2010)

Mixture *	g.m. N dose Production(kg/ha)		Average	Difference		Signification	
		2009	2010	(kg/ha)	Kg/ha	%	
Ph 100 %	N_0	13700	11108	12404	Mt	100	-
Ph 100 %	N ₅₀	17610	16691	17151	4747	138	XXX
Ph 100 %	N ₇₅	19010	23842	21426	9022	173	XXX
Ph 100 %	N ₁₀₀	20530	31613	26072	13668	210	XXX
Ph 75 %+T 25%	N_0	15600	40506	28053	15649	226	XXX
Ph 75 %+T 25%	N ₅₀	18500	39191	28846	16442	233	XXX
Ph 75 %+T 25%	N ₇₅	20720	44960	32840	20436	265	XXX
Ph 75 %+T 25%	N ₁₀₀	21700	46652	34176	21772	276	XXX
Ph 50 %+T 50%	N_0	16360	52842	34601	22197	279	XXX
Ph 50 %+T 50%	N ₅₀	19360	51554	35457	23053	286	XXX
Ph 50 %+T 50%	N ₇₅	20590	51071	35831	23427	289	XXX
Ph 50 %+T 50%	N ₁₀₀	22200	45904	34052	21648	274	XXX
Ph 25 %+T 75%	N_0	16860	45007	30934	18530	249	XXX
Ph 25 %+T 75%	N ₅₀	19750	49834	34792	22388	280	XXX
Ph 25 %+T 75%	N ₇₅	21250	50347	35799	23395	289	XXX
Ph 25 %+T 75%	N ₁₀₀	21790	53584	37667	25283	304	XXX

^{*-} Ph- timothy grass ;T-red clover

LSD 5%	2 170	1 333	1 752
LSD 1 %	3 014	2 444	2 729
LSD 0.1 %	4 110	3 776	3 943

The average of the factor A

Mixture *	Production. green mass (kg/ha)		Average	Differ	ences	Signification	
Mixtaro	2009	2010	(kg/ha)	(kg/ha)	%	o igi i i i i i i i i i i i i i i i i i	
Ph 100 %	17712	20814	19263	Mt	100	XXX	
Ph 75 %+T 25%	19130	42827	30979	11716	161	XXX	
Ph 50 %+T 50%	19628	50343	34986	15723	182	XXX	
Ph 25 %+T 75%	19912	49693	34803	15540	183		

LSD	5 %	2 180	3 122	2 651
LSD	1 %	3 060	5 204	4 132
LSD (0.1 %	4 220	7 909	6 065

4 406 14 199

The average of the factor B

N dose	Production. green mass (kg/ha)		Average	Differ	ences	Signification
	2009	2010	(kg/ha)	(kg/ha)	%	o.gca.
N ₀	15630	37366	26498	Mt	100	
N ₅₀	18805	39318	29062	2564	110	
N ₇₅	20393	42555	31474	4976	118	Х
N ₁₀₀	21555	44438	32997	6499	124	XX
LSD 5 %	2 280	4 484	3 3	882		
LSD 1 %	3 280	9 342	6 3	311		

9 302

The participation of species in the mixture was different according to the studied factors and of the vegetation year (table 4). Therefore in the first year for the 1st mowing, the clover took part in a larger proportion than the one sowed in the mixtures with 25% and 50% clover, and for the 75% clover mixture, the balance in the production was similar. For the 2nd mowing the

LSD 0.1 %

participation of the clover was 10-35% bigger than in the 1st mowing. In the 2nd year of vegetation, the clover balance has increased in all types of mixtures being in proportion of 50-55% for the varieties seeded with 25% clover, 65-70% in the variants sowed with 50% clover and 89-91% in the variants seeded with 75% clover.

Table 3
The production of dry substance obtained for different mixtures of timothy grass and clover on different nitrogen levels (2009-2010)

Mixture *	N dose	Dry substance Production(kg/ha)		Average	Difference		Signification
		2009	2010	(kg/ha)	Kg/ha	%	
Ph 100 %	N ₀	2678	2149	2 413	Mt	100	-
Ph 100 %	N ₅₀	3424	3025	3225	812	134	XXX
Ph 100 %	N ₇₅	3704	4434	4069	1656	169	XXX
Ph 100 %	N ₁₀₀	4049	5911	4980	2567	206	XXX
Ph 75 %+T 25%	N_0	3032	6593	4362	1949	180	XXX
Ph 75 %+T 25%	N ₅₀	3542	6613	5078	2665	210	XXX
Ph 75 %+T 25%	N ₇₅	4009	7953	5981	3568	248	XXX
Ph 75 %+T 25%	N ₁₀₀	4169	8719	6444	4031	267	XXX
Ph 50 %+T 50%	N_0	3122	7456	5289	2876	219	XXX
Ph 50 %+T 50%	N_{50}	3715	8529	6122	3709	254	XXX
Ph 50 %+T 50%	N ₇₅	3846	7784	5815	3402	241	XXX
Ph 50 %+T 50%	N ₁₀₀	4107	6888	5498	3085	228	XXX
Ph 25 %+T 75%	N_0	3071	6598	4835	2422	200	XXX
Ph 25 %+T 75%	N ₅₀	3567	8637	6102	3689	253	XXX
Ph 25 %+T 75%	N ₇₅	3814	7776	5795	3382	240	XXX
Ph 25 %+T 75%	N ₁₀₀	3937	7943	5940	3527	246	XXX

^{*-} Ph- timothy grass ;T-red clover

LSD	5 %	321	200	261
LSD	1 %	539	305	422
LSD	0.1 %	750	393	572

The average of the factor A

Mixture *	green	Production green mass (kg/ha)		Differ	ences	Signification	
	2009	2010	(kg/ha)	(kg/ha)	%		
Ph 100 %	3 464	3 880	3 672	Mt	100	-	
Ph 75 %+T 25%	3 688	7 470	5 579	1907	152	XXX	
Ph 50 %+T 50%	3 698	7 664	5 681	2009	155	XXX	
Ph 25 %+T 75%	3 597	7 739	5 668	1996	154	XXX	

LSD	5 %	260	601	431
LSD	1 %	340	788	564
LSD	0.1 %	420	985	702

The average of the factor B

N dose	Production green mass (kg/ha)		Average (kg/ha)	Differ	Signification	
	2009	2010	(1.9/1.0.)	(kg/ha)	%	
N_0	2 976	5 699	4 337	Mt	100	-
N ₅₀	3 562	6 701	5 132	795	118	Х
N ₇₅	3 843	6 987	5 415	1 078	125	XXX
N ₁₀₀	4 065	7 365	5 715	1 378	132	XXX

LSD 5 %	402	815	608
LSD 1 %	515	1094	805
LSD 0.1 %	660	1277	969

For the following mowing it is maintained a higher clover production in comparison to the seeding proportion, but it is registered a tendency of decrease from the 1st mowing to the other mowing.

The nitrogen fertilizers have influenced very little the proportion of the clover in the mixture, by registering a slight decrease when are increased the nitrogen fertilizers N_{100} .

The participation of species in the mixture %

Table 4

	N dose	1 st year (2009)				2 nd year (2010)					
Mixture *		1 st mowing		2 nd mowing		1 st mowing		2 nd mowing		3 rd mowing	
		Ph	Т	Ph	Т	Ph	Т	Ph	T	Ph	Т
Ph 100 %	N_0	100	-	100	ı	100	-	100	-	100	-
Ph 100 %	N ₅₀	100	-	100	ı	100	-	100	-	100	-
Ph 100 %	N ₇₅	100	-	100	ı	100	-	100	-	100	-
Ph 100 %	N ₁₀₀	100	-	100	ı	100	-	100	-	100	-
Ph 75 %+T 25%	N_0	60	40	40	60	45	55	50	50	55	45
Ph 75 %+T 25%	N ₅₀	60	40	35	60	45	55	48	52	57	43
Ph 75 %+T 25%	N ₇₅	65	35	38	62	48	52	50	50	57	43
Ph 75 %+T 25%	N ₁₀₀	70	30	35	65	50	50	52	48	58	42
Ph 50 %+T 50%	N ₀	40	60	30	70	30	70	35	65	42	58
Ph 50 %+T 50%	N ₅₀	42	58	25	75	32	68	37	63	44	56
Ph 50 %+T 50%	N ₇₅	45	55	25	75	34	66	37	63	43	57
Ph 50 %+T 50%	N ₁₀₀	50	50	20	80	35	65	38	62	43	57
Ph 25 %+T 75%	N ₀	28	72	20	80	11	89	15	85	27	73
Ph 25 %+T 75%	N ₅₀	25	75	20	80	10	90	12	88	26	74
Ph 25 %+T 75%	N ₇₅	25	75	15	85	9	91	18	82	30	70
Ph 25 %+T 75%	N ₁₀₀	30	70	15	85	9	91	20	80	31	69

Ph – *Phleum pretense*; T – *Trifolium pratense*

CONCLUSIONS

By the use of the timothy grass and clover mixtures is realized a superior net fodder from a quantitative and qualitative point of view in comparison with the fodder produced by the two species, separately.

The obtained green mass production was influenced especially by the mixture, the increases registered for only 25% clover were over 15 t/ha, and for 50% clover, the production increase was over 22 t/ha.

The dry substance production was influenced positively by the participation of the clover with over 50% and of the fertilizers was of 18% at N_{50} , 25% at N_{75} and 32% at N_{100}

We consider as being optimal the seeding variety of the mixture obtained from 50% timothy grass + 50% clover, fertilized with N_{50} - N_{75} .

The optimal recommended variety behaved very well also regarding the components of the production of the two species.

BIBLIOGRAPHY

- Moga, I, 1968 Researches and results obtained in the field of culture technology at fodder plants, Analele ICCPT Fundulea, Vol. LV, Bucharest.
- Moga, I, Varga, P., Kellner E., Burlacu, Gh., Paulian, Fl., Ulinici, A., Sipos, Gh., 1983 Perennial fodder plants, Pub. House Academiei R.S.R. Bucharest.
- Moga, I., Schitea, Maria, Mateias, M.C., 1996 Fodder plants, Ceres Publishing House, Bucharest.
- Varga, P., 1993- Fodder production, Ceres Publishing House, Bucharest.
- Zamfir, Ileana, Zamfir, M.C., Dihoru, Alexandrina, , Dragan, Lenuta, Raducanu, C., 2004 The effect of the seeding report on the production and quality of the mixtures constituted from perennial leguminous, perennial gramineous and annual leguminous. Agronomical researches in Burnasului Plain, vol 3, Agris Publishing House, Agricultural Magazine, Bucharest.