RESEARCHES CONCERNING THE USE OF THE MIXED PERENNIAL GRASSES AND LEGUMES IN ORDER TO OBTAIN HIGH YIELDS OF FOODER WITH A LOW CONSUMPTION OF NITROGEN FERTILIZERS

Constantin SĂICU¹, Lenuța DRĂGAN², Dan VEVERCA³

¹ Research Station for Agricultural Development Suceava ² INCDA Fundulea ³ ICEADR Bucureşti

Abstract

One of perennial grasses, orchard grass (*Dactylis glomerata*) achieve the highest fodder yields under high doses of nitrogen (N₂₀₀₋₂₅₀), and in the current economic conditions because of the price of fertilizers and their effect on feed and the environment it is necessary to use simple mixtures of grasses and legumes which will ensure high yields with consumption as low nitrogen fertilizer. Orchard grass (*Dactylis glomerata*) is best associated with alfalfa (*Medicago sativa*). Researches conducted in Suceava during period 2007-2009 revealed the role of perennial legumes in simple mixtures with perennial grasses in order to achieve higher yields. The results show through using of alfalfa mixed with orchard grass dry higher yields are obtained. In the first year we obtained an yield increase of 15% when I added 25% alfalfa and an yield increase on 31% when I added 50% alfalfa. In the second year the increases were on 11% when I added 25% alfalfa, 38% when I added 50% alfalfa and 40% when I added 75% alfalfa. In the third year the yield increases were 33% from the addition of 25% alfalfa and 47% when I added 50% alfalfa.

The high doses of nitrogen fertilizers (N_{75-100}) determine the higher forage production but influenced the decrease of the alfalfa proportion in the mixture, which mean a weaker feed from quality point of view.

The results from this paper were obtained in frame of Sectorial project "Develop of advanced technologies and integrated use of natural resources, increasing inputs efficiency, soil conservation and environmental protection for major field crops", financed by Agricultural and Rural Development Ministry, Agreement nr. 331/08.12.2006.

Key words: mixture, alfalfa, orchard grass, nitrogen

Perennial grasses sown in pure growing are among the crops that can give high yields, but their extension is conditioned by using of very high doses of nitrogenous fertilizers. To remove this obstacle has been introduced simple or complex mixtures between grasses and legumes, which have led to higher production then single crops of legumes and grasses, and while achieving the highest amounts of protein per hectare (Moga and collab, 1981, 1986). Researches in the recent decades have clarified a number of issues concerning the competition phenomenon between species which led to the best composition of simple mixtures for different growing areas from our country.

In our country it is known that among the perennial grasses, the alfalfa is most closely associated with orchard grass (Moga and collab., 1996).

An important role in profitableness of the forage plants it is to choose a balanced ratio between the plant protein (legumes) and energy plants (grasses), which together should provide

130-140 g of protein digestible in each nutrient unit (Moga and collab., 1993, Zamfir, 2004).

In order to elucidate of some technical and economic aspects of using simple mixtures of alfalfa and orchard grass into the north of Moldova area, has initiated an experimental device with different nitrogen fertilizer funds.

MATERIAL AND METHOD

The research was conducted in ARDS of Suceava, in 2007-2009, a faeoziom cambic soil with a clay content of 31.6% in the 0-20 cm layer, weak acid in water pH = 5.6 - 5.8, containing 3.0% humus, medium in phosphorus and potassium supplied.

It was used an experiment with two factors:

Factor A – crop: a1 = 100% orchard grass; a2 = 75% orchard grass + 25% alfalfa; a3 = 50% orchard grass + 50% alfalfa; a4 = 25% orchard grass + 75% alfalfa.

Factor B-nitrogen fertilizers: b1 = N0; b2 = N50; b3 = N75; b4 = N100.

Following varieties were used: Selena variety – alfalfa; Ovidiu variety - orchard grass.

The fertilizers were applied in single doses, in the spring before the plants start growing and harvesting was done at the beginning of flowering of first species.

The interpretation of experimental data was done by variance analysis method.

Climatic conditions during the experiment period (2007-2009) are presented in Table 1, which shows that the annual average temperatures were 1.6° higher than average multiannual, the positive deviations occurring mainly in the hot season and rainfall indicates values on 721.5 mm in 2007, 887.0 mm in 2008 and 649 mm in 2009 versus 586.8 mm what represent the average multiannual.

The highest values of the rainfall surplus than the multiannual average was occurred in July (87.5 mm), October (34.8 mm) and August (15.2 mm). In conclusion we can say that the experimental period (2007-2009) was warmer and rainier than the multiannual average.

RESULTS AND DISCUSSIONS

Green mass production presented in the *table 2* shows that the lowest average yield of only 26,820 kg / ha was recorded in pure growing of orchard grass, in the conditions when were not applied nitrogenous fertilizers.

By using of alfalfa alongside orchard grass were achieved the increases statistically assured, achieving an increase in unfertilized variants on 4370 kg /ha green mass was when was added at sowing 25% alfalfa, 9380 kg / ha green mass was obtained when it used at sowing 50% alfalfa and 11403 kg/ha green mass when it used at sowing 75% alfalfa.

The average of Factor A shows that the increases of green mass statistically assured at variants with 50% and 75% alfalfa in the mixture was obtained.

The average of Factor B shows that very significant increases at all doses of nitrogen has been achieved, on 9538 kg / ha at N_{50} , 15538 kg/ha at N_{75} and 21660 kg/ha at N_{100} .

Dry matter production presented in *table 3* reveals how the two experimental factors were determined its level. Thus at orchard grass in unfertilized pure growing, a production of 4330 kg / ha was registered and by adding of nitrogen from at this crop, production increases of 2884 kg / ha at $N_{50},\,3882$ kg / ha at N_{75} and 5397 kg /ha at N_{100} were obtained.

When we added 25% alfalfa the production increase of 1448 kg/ha at the unfertilized variant was achieved and by applying increasing doses of nitrogen the production increases grew to 5744 kg/ha. The addition of 50% and 75% alfalfa, the production increases caused by fertilizer were lower.

It shows that the average unit has achieved an increase of dry matter, statistically assured only if the mixture of 50% orchard grass + 50% alfalfa.

Average of factor A indicates dry substances increases, statistically assured only of the orchard grass mixture in the 50% proportion + 50% alfalfa.

Average of factor B indicates dry substances increases, statistically assured on 35% at $N_{50},\,55\%$ at $N_{75}\,\text{and}\,\,70\%$ at N_{100}

The species participations in production accomplished is presented in Table 4, from which it notes that in the first year the alfalfa participation exceeded the percentage of alfalfa seeds used in sowing, because the development of this species is much greater than orchard grass development. Also it noted the increase of alfalfa weight has been influenced by nitrogenous fertilizers.

In the second year yield the participation percentage of those two species was closely to the seeds mixture percentage, and nitrogen effects on alfalfa participation was diminished compared to first year. In the third year the alfalfa participation was lower and high doses of nitrogen fertilizers led decreases the alfalfa participation in achieving of production.

The economic efficiency. The data from table 5 shows when orchard grass been grown in pure growing proved to be optimal variant the fertilization application on N_{100} .

It is noted that the average yield was superior to the other alternatives; the economic indicators and the consumption of fuel and labor have been favorable. Regarding the specific consumption of energy, it has been higher than in the other variants, due to higher nitrogen dose (intensive), which eventually led to obtaining a lower efficiency.

At the feed mixture consisting of 75% orchard grass and 25% alfalfa, the best variant, in terms of average production achieved, economic indicators and the consumption of labor and energy, was the N_{100} has been applied. But, thanks to higher specific energy consumption due nitrogen, energy efficiency was lower than other alternatives.

Table 1

The climatic conditions during research period 2007 - 2009

Average or total		9,7	9,4	9,1	9,6	7,8	+1,6		721,5	0,788	649,1	752,5	586,8	+165.7
₹		-2,6	9,0	-2,3	-1,4	-1,9	-0,5		34,3	29,9	37,1	33,8	26,5	+73
₹		6,0	3,8	5,5	3,4	2,4	+1,0		43,4	8,0	18,6	23,3	30,6	-7.3
×		8,7	9,7	8,7	0,6	8,4	9,0+		87,0	43,4	62,6	64,3	29,5	+34.8
×		13,5	13,0	15,7	14,1	14,2	-0,1		67,4	60,4	40,2	96,0	40,8	+152
III/	ى د ₀ 0	19,7	20,0	18,9	19,5	18,3	+1,2		169,0	72,3	30,8	2'06	62,8	+27.0
IIA	Monthly average temperatures ⁰ C	21,5	19,2	20,4	20,4	18,4	+2,0	mm - st	105,8	301,6	120,8	176,1	9'88	+87.5
	average te	19,9	18,3	17,7	18,6	16,9	+1,7	Precipitations - mm	30,7	99,2	154,9	6,46	9'86	+13
>	Monthly	16,3	13,7	14,7	14,9	13,7	+1,2		53,9	91,5	82,2	75,9	80,2	-4 3
2		9,2	9,6	10,8	6'6	8,0	+1,9		32,9	135,2	8,4	58,8	48,2	+10.6
≡		5,9	4,9	2,3	4,4	1,2	+3,2		41,8	15,9	29,2	29,0	36,2	-7.2
=		9,0-	3,3	-1,2	0,5	-2,3	-2,8		45,2	23,9	19,0	29,4	25,6	43.8
_		3,7	-3,1	-2,6	9'0-	-4,1	-3,5		10,1	5,7	45,3	20,4	24,2	۲.
Specification		2007	2008	2009	average 2007-2009	Multiyear average	Deviation ±		2007	2008	2009	Average 2007-2009	Multiyear average	Deviation +

Table 2
The green mass yield (kg/ha) obtained at the orchard grass and alfalfa mixtures on different nitrogen funds

Variant	Gree	n mass yield (k	(g/ha)	The average	Differ	ence	Signification
variani	2007	2008	2009	yield(kg/ha)	kg/ha	%	Signification
a₁b₁	8980	33880	37600	26820	-	100	
a₁b₂	12190	47350	53760	37760	10946	141	XXX
a₁b₃	18070	55610	58760	44146	17326	165	XXX
a₁b₄	19980	69120	70050	53050	26230	198	XXX
a₂b₁	13240	38940	41390	31190	4370	116	Х
a_2b_2	14420	49638	58490	40849	14029	152	XXX
a₂b₃	18150	63594	64550	48765	21945	182	XXX
a₂b₄	20390	74510	73740	56213	29393	210	XXX
a₃b₁	15040	50070	43490	36200	9380	135	XXX
a₃b₂	16970	61510	58668	45716	18896	170	XXX
a₃b₃	18260	70150	63650	50687	23867	189	XXX
a₃b₄	20920	81010	69410	57113	30293	213	XXX
a₄b₁	16410	54600	43660	38223	11403	143	XXX
a ₄ b ₂	17560	66660	54540	46253	19433	172	XXX
a ₄ b ₃	19440	72860	60670	50990	24170	190	XXX
a ₄ b ₄	21680	71450	64964	52698	25878	196	XXX
DL 59	% 30	19 4832	4798		3313		

DL 5% 309 4832 4798 3313 DL 1% 414 6936 6880 4743

The average of factor A

			1110 41014	ige of factor A	•			
Fact. A	2007	2008	2009	Average	Differ	ence	Signification	
ract. A	2007	2006	2009	(kg/ha)	kg/ha	%	Signification	
a ₁	14805	51490	55042	40446	-	100		
a ₂	16550	56670	59542	44254	3808	109		
a ₃	17798	65685	58804	47429	6983	117	XXX	
a ₄	18773	66939	55958	47223	6777	117	XXX	
DL 59	6	155 6148	5620		3974			
DL 19	6	222 6860	6380		4487			

The average of factor B

			1110 41010	ago or lactor E			
Fact. B	2007	2008	2009	Average	Differ	ence	Cignification
Fact. D	2007	2006	2009	(kg/ha)	kg/ha	%	Signification
b ₁	13418	44373	41535	33109	-	100	
b ₂	15285	56290	56365	42647	9538	129	XXX
b ₃	18480	65554	61907	48647	15538	147	XXX
b ₄	20743	74023	69541	54769	21660	165	XXX
DL 5'	%	154 66	6042		4283		
DL 1	%	217 72	260 7160		4879		

Table 3
The dry substances yield (kg/ha) obtained at the orchard grass and alfalfa mixtures on different nitrogen funds

				iuiius			
	Th	e d.s. yield(kg/	ha)	Average	Differ	ence	
Variant	2007	2008	2009	yield (kg/ha)	kg/ha	%	Signification
a₁b₁	1850	5784	5356	4330	-	100	
a₁b₂	2300	8187	11155	7214	2884	167	XXX
a₁b₃	2890	9627	12119	8212	3882	190	XXX
a₁b₄	3180	11826	14175	9727	5397	225	XXX
a ₂ b ₁	2130	6396	8807	5778	1448	133	XXX
a ₂ b ₂	2510	8165	12119	7561	3231	175	XXX
a ₂ b ₃	3280	10602	13191	9024	4694	208	XXX
a ₂ b ₄	2950	12333	14940	10074	5744	233	XXX
a₃b₁	2420	7998	8696	6371	2041	147	XXX
a ₃ b ₂	2810	9396	11760	7989	3659	185	XXX
a ₃ b ₃	2880	10815	12782	8826	4496	204	XXX
a ₃ b ₄	3210	12567	13703	9827	5497	227	XXX
a₄b₁	1980	8082	8656	6249	1919	144	XXX
a ₄ b ₂	3090	9915	10639	7881	3551	182	XXX
a ₄ b ₃	3130	11990	12008	9043	4713	208	XXX
a ₄ b ₄	2960	10725	13008	8898	4568	205	XXX

 DL 5%
 121
 840
 733
 565

 DL 1%
 163
 1106
 1029
 766

The average of factor A

					g 	-		
Fact. A	2007	2008	3 20	00	Average	Diffe	rence	Signification
raci. A	2007	2000	5 20	09	(kg/ha)	kg/ha	%	Signification
a_1	2305	8856	107	701	7287	-	100	
a ₂	2718	9374	122	264	8119	832	111	
a ₃	2830	1019	4 117	'35	8253	966	113	Х
a ₄	2790	10178	8 110)55	8008	721	110	
DL 5°	%	62	1264	1286		840		•
DL 1 ^o	%	89	1438	1396		974		

The average of factor B

				. 9			
Fact. B	2007	2008	2009	Average (kg/ha)	Differ kg/ha	rence %	Signification
b ₁	2095	7065	7879	5680	-	100	
b ₂	2678	8916	11418	7671	1190	135	xxx
b ₃	3075	10789	12525	8786	3106	155	xxx
b ₄	3075	11863	13957	9632	3952	170	xxx
DL 5° DL 1°		61 1586 82 1645			1036 1106		

The species participation in the yield achieving (%)

Table 4

		20	07		08	20	09
Mixture	Nitrogen doses	Orchard grass	alfalfa	Orchard grass	alfalfa	Orchard grass	alfalfa
	N ₀	100	-	100	-	100	-
Orchard grass	N ₅₀	100	_	100	-	100	-
100 %	N ₇₅	100	_	100	-	100	-
	N ₁₀₀	100	_	100	-	100	-
	N ₀	55	45	70	30	75	25
Orchard grass 75 %+	N ₅₀	52	48	65	35	80	20
alfalfa 25 %	N ₇₅	48	52	60	40	82	18
	N ₁₀₀	50	50	58	42	86	14
	N ₀	38	62	48	52	52	48
Orchard grass 50 %+	N ₅₀	32	68	44	56	54	46
alfalfa 50 %	N ₇₅	25	75	42	58	60	40
	N ₁₀₀	22	78	40	60	62	38
	N ₀	15	85	30	70	35	65
Orchard grass 25 % +	N ₅₀	13	87	28	72	38	62
alfalfa 75 %	N ₇₅	10	90	25	75	44	56
	N ₁₀₀	10	90	25	75	45	55

Concerning the obtained results from data of feed mixture consisting of 50% orchard grass and alfalfa 50%, it shows that the best choice proved those fertilized with N_{75} and N_{100} , in terms of average production, consumption and economic indicators of labor and fuel. However the specific energy consumption is higher and energy yields are lower compared with the other two variants.

Regarding the feed mixture consisting of 25% orchard grass and 75% alfalfa, in terms of economic indicators, the variants which highlight are N_{50} and N_{75} .

The specific consumption of fuel and labor are slightly higher, but the specific energy consumption and therefore energy efficiency are more favorable compared with fertilized N_{100} variant.

Table 5
The main technical-economics and energetic indicators obtained at the fodder mixtures comprises from perennial legumes and grasses on the different nitrogen fertilizers levels, Suceava. 2007-2009

Comment of the control of the contro
Pure growing of orchard grass 75% orchard grass+ 25% alfalfa 100%
No N ₅₀ N ₇₅ N ₁₀₀ N ₀ N ₅₀ N ₅₀ N ₇₅ N ₁₀₀
26,8 37,7 44,1 53,1 31,2 40,8 48,8 56,2
4,33 7,21 8,21 9,73 5,78 7,56 9,02 10,07
64,1 59,3 58,2 54,4 59,1 57,6 56,2 53,3
6,5 8,5 8,3 10,3 10,4 9,4 9,3 10,9
10,1 14,4 14,3 19,0 17,5 16,3 16,6 20,5
0,659 0,617 0,604 0,583 0,635 0,609 0,596 0,578
3,057 2,895 2,824 2,765 2,965 2,864 2,811 2,749
55,4 89,6 98,9 102,0 52,3 85,3 93,0 98,2
850 850 850 850 850 850 850 850
15,34/1 9,49/1 8,59/1 8,33/1 16,25/1 9,96/1 9,14/1 8,65/1

CONCLUSIONS

The feed production at mixture of orchard grass and alfalfa was superior to pure growing, the optimal proportion being on 50% orchard grass + 50% alfalfa.

Nitrogen fertilizer determined production increases in all types of mixture and at pure growing of orchard grass.

The participation degree of alfalfa in achieving of the fodder production in frame of the experimented mixtures was higher in the first two years of exploitation and lower in the third year in particular at higher doses of nitrogen N_{75} and N_{100} .

From point of economically view the most advantageous concerning the average feed yield, economic indicators and the consumption of labor and fuel, was registered with N_{100} at pure growing of orchard grass and mixture of 75% orchard grass

+ 25%alfalfa, at N_{75} and N_{100} with mixture of 50% orchard grass + 50% alfalfa and N_{50} - N_{75} with mixture of 25%orchard grass + 75% alfalfa.

BIBLIOGRAPHY

- Moga, I., Şerbănescu, E., Fabian, I.,1981 Posibilități de îmbunătățire a bilanţului proteic la plantele furajere, Probleme de agrofitotehnie teoretică şi aplicată, vol.III, nr. 1, ICCPT Fundulea.
- Moga, I., Varga, P., Kellner, E., Burlacu, Gh., Paulian, Fl., Ulinici, A., Şipos, Gh., 1983 Plante furajere perene, Editura Academiei R.S.R., Bucureşti.
- Moga, I., Schitea, Maria, Mateias, M., 1996 Plante furajere, Ed. Ceres Bucureșt
- Zamfir, M.C., Dihoru, Alexandrina, Drăgan, Lenuţa, Răducanu, C., 2004 Efectul raportului de semănat asupra producţiei şi calităţii amestecurilor constituite din leguminoase perene, graminee perene şi leguminoase anuale, Cercetări agronomice în câmpia Burnasului, vol.3, Editura Agris-Redacţia Revistelor agricole.