PLS "NIR - CRUDE FIBER" MODEL FOR FORAGES FROM HILL PERMANENT GRASSLAND

Monica HĂRMĂNESCU ¹, Alexandru MOISUC ¹, Marinel HORABLAGA ¹, Florina RADU ¹, Iosif GERGEN ¹

¹Banat's University of Agricultural Sciences and Veterinary Medicine of Timişoara

Abstract

The main objective of this study was to obtain a NIR calibration model for prediction the crude fiber content of forages harvested in June 2009 from hill permanent grassland (Grădinari, Caraș-Severin District). The experimental field was organized in ten experimental trials fertilized organic, mineral, and organo-mineral. The soil was Calcic Luvisol and the annual average temperature around 10.4°C. The floristic composition of forages from this period was determined gravimetrically. From *Poaceae* were present *Festuca rupicola* and *Calamagrostis epigejos*. *Fabaceae* family was represented by *Trifolium repens* and *Lathyrus pratensis*. From other botanical family: *Rosa canina*, *Filipendula vulgaris*, *Galium verum* and *Inula britanica*.

Like main input data for calibration model was used the results for this qualitative parameter by chemical method and the reflectance values from NIR spectra for all analysed samples. Partial last square (PLS) regression was used to obtain the "NIR - Total Fiber" model, implemented in Panorama program (version 3, LabCognition, 2009). The statistical parameters (R²=0.7355; RMSEC=3.2764) and the differences between references and predicted values situated in range 0.0631 and 13.1948% suggest a medium quality of calibration model, but it is promising to use it to predict the crude fiber contents of forages from grassland in this period of year using higher number of samples for calibration.

Key words: crude fiber, NIR, forages, grassland

Crude fiber represents an important parameter for forages quality (Crăiniceanu et al., 2006). The term crude fiber define the component of plant forages insoluble in water and which are not digestible by mammalian enzyme systems (Moore&Hatfield, 1994), formed by cellulose, hemicelluloses, pectic substances and lignin.

represents microfibrillar Cellulose a component of cell wall of forage plants. It is formed of β-glucose linked 1-4, with polymerization degree of between 2000 - 6000 in primary cell walls, and more than 10000 in (Waldron et secondary walls al. Hemicelluloses are hetero-polysaccharides witch contain arabinans, mannnans, xylans, and galactans (Gârban, 1999) and are fond in primary and secondary cell wall (Waldron et al, 2003). Hemicelluloses have a higher nutritive value than cellulose because are more digestively (Drînceanu, 1994). Pectic substances represent a nonhomogeny poly-saccharine group, witch contain pectic acid, galactans, arabinans and sometime xylans (Gârban, 1999). Lignin is a complex chemical compound linked both to hemicelluloses and to different plant polysaccharides, conferring mechanical strength to the cell wall (Şumălan, 2006).

Some animals, particularly ruminants, have the capacity to digest and use crude fiber like a source of nutrients, with the help of symbiotic micro-organisms that live in their guts (Georgescu et al, 2007; Van Soest, 1994). Drînceanu (1994) affirm that for ruminants the cellulose content must be between 23-25% in feed ratio. Volatile fatty acids resulted after microbial crude fiber degradation represents the main source of energy for these animals (65-75% from energy available for organism). For swine and poultry crude fiber is a restrictive factor, the recommended level being between 3 – 8% in feed ratio (Drînceanu, 1994).

The chemical method used to determine the crude fiber content of forages from grassland are limited by money, reagents acquisition, a long time for sample analyses, necessity of qualified personal capable to obtain the good results. NIR Spectroscopy can be used like an alternative method for these classical determinations because is a non-destructive and a very quickly qualitative and quantitative analysis method (Wilson, 1994). NIR Spectroscopy not requires the usage of reagents, being a friendly method for environment (Foley et al, 1998).

The necessity to study NIRS method applications in our country to characterize the crude fiber quantity of forages from grassland

refers to calibrate this method for the plants species existed in different pedo-geographically zones from Romania.

The main objective of this study was to obtain a NIR calibration model for predict the crude fiber content of forages from hill grassland (Grădinari; Caras-Severin County). For this, the harvested forages samples were analyzed for crude fiber content using both the chemical and NIR Spectroscopy methods. Then it was made the validation of obtained NIR model using samples from the same grassland and harvested in the same period of the year (June 2009).

MATERIAL AND METHOD

PLS (Partial Last Square) regression, implemented in Panorama software (Variant 3, LabCognition, 2009) was selected to obtain the NIR calibration model using the chemical data for crude fiber content by JAOAC 962.09/1990 method (when the samples are sequentially refluxed in dilute base followed by dilute acid) and the values of reflectance from 150 NIR spectra scanned with V670 Spectrophotometer instrument by Abble-Jasco. The scan was made in the range 800-2500 nm. For all the grounded dried samples the determinations were made in triplicate.

The analysed forages were harvested in June 2009 from hill permanent grassland (Grădinari, Caraş-Severin District), organized in ten trials with different doses of fertilizers. For each variant were made five replications. It was used mineral (15:15:15 NPK complex, ammonium nitrate, superphosphat, potassium salt) and organic fertilizers (fermented sheep manure) over the period 2003-2008. The mineral fertilizers were

applied yearly and fermented sheep manure at each two years.

The ten fertilized trials were organized in randomized plots, in multiple stage blocks with five replications: V1-unfertilized trial, V2-20 t/ha sheep manure, V3-40 t/ha sheep manure, V4-60t/ha sheep manure, V5-20 t/ha sheep manure + $50P_2O_5(Kg/ha),\ V6-20$ t/ha sheep manure + $50P_2O_5(Kg/ha),\ V6-20$ t/ha sheep manure + $50P_2O_5(Kg/ha) + 50\ K_2O\ (Kg/ha) + 50P_2O_5(Kg/ha) + 50\ K_2O\ (Kg/ha) + 50P_2O_5(Kg/ha) + 50\ K_2O\ (Kg/ha) + 50K_2O\ (K$

The floristic composition of forages from this period of year was determined gravimetrically. From *Poaceae* familly dominant was *Festuca rupicola* (varied between 16.00 – 52.00%), followed by *Calamagrostis epigejos* (5.00-13.00%). Fabaceae family was represented mainly by *Trifolium repens* (dominant) and *Lathyrus pratensis*. From other botanical family were present *Rosa canina* (7.00-18.00%), *Filipendula vulgaris* (3.00-9.00%), *Galium verum* (3.00-7.00%) and *Inula britanica* (5.00%).

The soil of permanent grassland was Calcic Luvisol and the annual average temperature in this region was around 10.4°C.

RESULTS AND DISCUSSIONS

To perform the NIR calibration model for prediction of crude fiber content of forages from permanent grassland were used whole spectral domain (800-2500 nm). Statistical parameters of obtained "NIR-CF" model are presented in *table1*.

Table 1
Statistical parameters for "NIR-CF" model with whole spectral domain

\mathbb{R}^2	0.7355	
RMSEC	3.2764	
SD	4.3873	
"NIR-CF" model - NIR-crude fiber model		

It can be observed that these statistical parameters ($R^2 = 0.7355$, RMSEC = 3.2764, SD = 4.3873) suggest a medium quality of "NIR-CF" model. This quality of NIR calibration is underlined very well both in the graphical presentation of prediction for crude fiber by "NIR-CF" model with whole spectral domain (Figure 1) and also by the differences between the chemical results and those predicted for control samples harvested in the same period of year and grassland and conditioned in the same maner with those used to performe the calibration (*table 2*).

The differences between Real and Predicted values were situated in range 0.0631 and 13.1948%, apreciativellly 28% from these being under 1%, 28% under 3%, and 23% under 5%. The differences values situated in range 10-13% represented 7.7%.

These results encourage the continuation of beginning studies. To perform optimum NIR prediction model is necessary in this case the selection of a high number of forages samples than 150, to characterize better the entire concentration values of this qualitative parameter of forages from permanent grassland.

Table 2
The results of crude fiber (%) prediction for the control samples forages (June 2009) by "NIR-CF" calibration model with whole spectral domain

	Crude fiber (%)			
Sample's name	Real (chemical method)	Predicted (NIR model)	Differences between Real - Predicted	
101a	32.1000	36.7676	-4.6676	
101b	43.9900	30.7952	13.1948	
101c	18.8500	23.8517	-5.0017	
101d	31.0600	27.6500	3.4100	
102a	34.5700	36.9981	-2.4281	
102b	24.8900	28.2247	-3.3347	
102c	25.4600	24.7033	0.7567	
102d	28.2500	29.0979	-0.8479	
103a	36.4500	37.0095	-0.5595	
103b	32.0800	32.6773	-0.5973	
103c	21.0700	25.2712	-4.2012	
103d	28.2200	28.5565	-0.3365	
104a	38.8500	37.0497	1.8003	
104b	32.9800	28.9572	4.0228	
104c	20.7200	26.1794	-5.4594	
104d	30.8200	26.2278	4.5922	
105a	35.1700	36.3613	-1.1913	
105b	20.7300	30.9529	-10.2229	
105c	24.3300	25.2422	-0.9122	
105d	32.0800	29.8422	2.2378	
106a	33.0100	35.2060	-2.1960	
106b	22.6000	26.4702	-3.8702	
106c	24.7400	21.7402	2.9998	
106d	31.0200	25.8390	5.1810	
107a	36.4100	36.4731	-0.0631	
107b	29.7800	30.4409	-0.6609	
107c	20.0300	26.6518	-6.6218	
107d	31.6200	29.8201	1.7999	
108a	36.4400	36.2102	0.2298	
108c	22.4200	24.9236	-2.5036	
108d	29.5500	28.5828	0.9672	
109a	33.7500	35.3963	-1.6463	
109b	28.2200	27.2208	0.9992	
109c	24.3700	25.8156	-1.4456	
109d	36.0700	30.2473	5.8227	
110a	40.7000	36.8461	3.8539	
110b	39.1000	28.0055	11.0945	
110c	25.3800	23.9805	1.3995	
110d	36.2700	30.1481	6.1219	

Figure 1 Prediction of crude fiber by "NIR-CF" model with whole spectral domain

CONCLUSIONS

The PLS regression model "NIR-CF" performed using the results of crude fiber of forages harvested in June 2009 by chemical method, and the reflectance values from whole NIR spectra had a medium quality. This model is promising to be used with success to determine routinely this parameter for the samples harvested in this period of year from the permanent grassland after the enrichment with a higher number of plants samples to characterize better the entire concentration values of crude fiber.

Acknowledgments

The authors are grateful to CNCSIS-UEFISCSU (România) for financial support (PD project / 28septembrie2010: On the applications of spectroscopic and chromatographic methods to establish the effects pf fertilisation on the quality of forages from grasslands).

BIBLIOGRAPHY

- Crăiniceanu, E., Matiuţi, M., Crăiniceanu, D., 2006 Nutriţia animalelor, Editura Brumar, Timişoara, ISBN 973-602-217-3.
- **Drinceanu, D., 1994** Alimentaţia animalelor, Ed. Eurobit, p: 16-17.

- Foley, W.J., McIlwee, A., Lawler, I., Aragones, L., Woolnough, A.P., Berding, N., 1998 Ecological application of near infrared reflectance spectroscopy-a tool for rapid, costeffective prediction of the composition of plant and animal tissues and aspects of animal performance, Oecologia 116, p: 293-305.
- **Gârban, Z., 1999** *Biochimie. Tratat comprehensive*, Vol. 1, 2nd Edition, Ed. Didactica si Pedagogica, Bucuresti, p: 166.
- Georgescu, Gh., Mărginean, Gh., Petcu, M., 2007 Cartea producătorului și procesatorului de lapte, vol. 2, Editura Ceres, București, ISBN: 978-973-40-0773-8
- Moore, K.J., Hatfield, R.D., 1994 Carbohydrates and forage quality, Forage Quality, Evaluation, and Utilization (Fahey, G. C., Jr., Collins, M. C., Mertens, D. R. & Moser, L. E., eds.), p. 229-280. ASA-CSSA-SSSA, Madison, WI.
- **Şumălan, R., 2006 -** *Fiziologie vegetală*, Editura Eurobit, Timișoara, ISBN 973-620-199-6.
- Van, Soest, P.J., 1994 Nutritional Ecology of the Ruminant, 2nd ed. Cornell University Press, Ithaca, NY.
- Waldron, K.V., Parker, M.L., Smith, A.A., 2003 Plant Cell Walls and Food Quality, Comprehensive Reviews in Food Science and Food Safety, Vol. 2, p: 101-119.
- Wilson, R.H. Editor, 1994 Spectroscopic Techniques for Food Analysis, VCH Publishers Inc., New York, Weinheim, Cambridge, p. 13-58.
- ***, 1990 JAOAC Official Methods of Analysis, 962.09

 Fiber (Crude) in Animal Feed. Ceramic Fiber
 Filter method, edited by Herlich Kenneth,
 15Edition, published y Association of Official
 Analytical Chemists, Arlington, Virginia, SUA.