ON THE IMPACT OF THE PRE-EMERGENT CROP ON WEEDING IN SOY, WINTER WHEAT, SUNFLOWER, BARLEY, MAIZE, AND OAT CROPS

A. LĂZUREANU¹, G. CÂRCIU¹, S. ALDA¹, Liana Maria ALDA¹

¹ Universitatea de Științe Agricole și Medicină Veterinară a Banatului, Timișoara e-mail: lazureanuaurel@yahoo.com

In this study we aim at presenting the evolution of the weeding degree in six crops depending on the pre-emergent crops. In the experimental year 2006, the natural weeding state of each crop under study in monoculture had the following values: 80.10 weeds/m² in soy, 81.10 weeds/m² in winter wheat, 180.20 weeds/m² in maize, 93.00 weeds/m² in barley, 142.00 weeds/m² in sunflower, and 121.00 weeds/m² in spring oat. The impact of the pre-emergent crop results in a diminution of the weeding degree, as follows: 18.25-30.12% in soy, 20.92-28.68% in winter wheat, 20.16-31.17% in sunflower, 22.16-30.96% in barley, 21.45-29.43% in maize, and 16.73-25.75% in oat. The pre-emergent crop had un important influence on yield level in six crops, the productivity being in correlation with weeding degree and having the following values: 17,26-22,8 q/ha in soy, 35,3-42,96 q/ha in winter wheat, 20,48 -24,75 q/ha in sunflower, 32,40-38,88 q/ha in barley, 48,00-50,80 q/ha in maize, and 16,38-19,25 q/ha in oat.

Key words: natural weeding, weeding degree, crops, yield level.

Of particular importance within crop rotation is the way in which crops succeed each other, i.e. the pre-emergent crop after which there is a certain crop. Setting each crop after the best pre-emergent crop develops optimal conditions for the maximum valorising of the yielding potential of a crop and soil [1]. The pre-emergent crop plays an important role influencing yield, soil features, weed, disease, and pest control, chemical composition and particularly yield quality [2]. Monitoring the effect of the pre-emergent crop on weeding, research we have carried out confirms the fact that weeding differs in the same crop depending on the pre-emergent crop [3].

MATERIAL AND METHODS

The experiments were organised at the Didactic Station in Timişoara, on a cambic, poorly gleyied chernozem with a humus content of 3.41%, normally supplied with nitrogen (0.18%), poorly supplied in mobile phosphorus (17.80 ppm) and with a high supply of assimilable potassium (187.6 ppm). In the fall of 2005, we sowed winter crops – winter wheat and winter barley – and in the spring of 2006 we sowed summer crops – oat, soy, sunflower, and maize. The area cultivated with straw cereals (winter

wheat, winter barley, and oat) is 2,987 m 2 (21.75 m x 137.35 m), each of the preemergent crops covering 498 m 2 , with 4 replications. In the case of tiller crops (maize and sunflower), the area of each crop is 2,884 m 2 (21 m x 137.35 m), each preemergent crop covering 480 m 2 , with 4 replications, while soy covers 2,966 m 2 (21.60 m x 137.35 m), each pre-emergent crop covering 494 m 2 , with 4 replications[4].

RESULTATS AND DISCUSSIONS

In soy the number of weeds oscillated between 55.97 weeds/m² in sunflower and 65.48 weeds/m² in wheat. Weed control percentage is significantly influenced by the pre-emergent crop and ranged between 18.25% and 30.12%, respectively. The lowest number of weeds was in sunflower ($tab\ 1$).

Table 1 Impact of pre-emergent crop on weeding in monocultural soy, in 2006

Variant (pre-emergent crop)	Weeds/m ²	Weed control depending on the pre-emergent crop (%)
V ₁ – Soy (monoculture)	80.10	0.00
V ₂ – Wheat	65.48	18.25
V ₆ – Barley	62.98	21.37
V ₄ – Oat	62.12	22.45
V ₅ – Maize	57.43	28.30
V ₃ – Sunflower	55.97	30.12

Monocultural soy yield was 17.80 q/ha. The highest yields were in the variants in which the pre-emergent crops were grain maize and sunflower, i.e. 20.80 q/ha and 22.19q/ha, respectively. Straw cereals such as winter wheat and winter barley yielded 14.72% and 9.94% respectively more than the control (*tab* 2).

Table 2 Impact of the pre-emergent crop on monocultural soy, in 2006

Variant (pre-emergent crop)	Absolute yield (q/ha)	Relative yield (%)	Difference in yield (q/ha)	Significance
V ₅ – Maize	22.80	128.09	+5.00	XXX
V ₃ – Sunflower	22.19	124.66	+4.39	XXX
V ₂ – Wheat	20.42	114.72	+2.62	Х
V ₄ – Barley	19.57	109.94	+1.77	-
V ₁ – Soy (monoculture)	17.80	100.00	Mt.	ı
V ₆ – Oat	17.26	96.97	-0.54	-

DL_{5%}= 2.19 q/ha DL_{1%}= 3.04 q/ha DL_{0.1%}= 4.19 q/ha

In winter wheat after determining the number of weeds/m², we found out that it oscillated between 57.84 weeds/m² in soy and 64.13 weeds/m² in winter barley. Weed control percentage was significantly influenced by the pre-emergent crop, and it oscillated between 20.92% and 28.68%, respectively. Weed control percentage in barley and oat was 20.92% and 21.90%, respectively. Tiller crops

ensure a more efficient weed control, with soy reaching a weed control of 28.68% (*tab.3*).

Table 3

Impact of pre-emergent crop on weeding in monocultural winter wheat, in 2006

Variant (pre-emergent crop)	Weeds/m ²	Weed control depending on the pre-emergent crop (%)
V ₂ –Wheat (monoculture)	81.10	0.0
V ₄ – Barley	64.13	20.92
V ₆ – Oat	63.34	21.90
V ₅ – Maize	61.90	23.67
V ₃ – Sunflower	61.41	24.28
V ₁ – Soy	57.84	28.68

Yield in monocultural winter wheat was 34.10 q/ha. The highest yield increases compared with the control were after soy and sunflower, i.e. 8.86 q/ha and 5.77 q/ha, respectively. After maize, a crop with high demands of water and nutrients, the increase in yield was 3.62 q/ha. Yield increases after summer oat and summer barley were insignificant (*tab.4*). Relative yield oscillated between 103.52% in barley and 125.98% in soy.

Table 4 Impact of the pre-emergent crop on monocultural winter wheat, in 2006

Variant (pre-emergent crop)	Absolute yield (q/ha)	Relative yield (%)	Difference in yield (q/ha)	Significance
V ₁ – Soy	42.96	125.98	+8.86	XXX
V ₃ – Sunflower	39.87	116.92	+5.77	XX
V ₅ – Maize	37.72	110.62	+3.62	X
V ₆ -Oat	36.08	105.81	+1.98	-
V ₄ – Barley	35.30	103.52	+1.20	-
V ₂ -Wheat (monocult).	34.10	100.00	Mt.	-

 $DL_{5\%}$ = 3.51 g/ha $DL_{1\%}$ = 4.87 g/ha $DL_{0.1\%}$ = 6.72 g/ha

In sunflower the number of weeds oscillated between 97.74 weeds/m² in soy and 111.78 weeds/m² in winter wheat. The weed control percentage was significantly influenced by the pre-emergent crop and ranged between 20.16% and 31.17%, respectively. The lowest number of weeds was in pre-emergent soy (*tab* 5). The best pre-emergent crops for sunflower proved soy and winter wheat, with yields between 24.75 q/ha and 23.46 q/ha, respectively. After winter barley and grain maize, we got yield of 23.12 q/ha and 22.37 q/ha, respectively (*tab*. 6).

Table 5 Impact of pre-emergent crop on weeding in monocultural sunflower, in 2006

Variant (pre-emergent crop)	Weeds/m ²	Weed control depending on the pre-emergent crop (%)
V ₃ – Sunflower (monoculture)	142.00	0.00
V ₂ – Wheat	111.78	20.16
V ₆ – Barley	111.50	21.48
V ₄ – Oat	107.42	24.35
V ₅ – Maize	101.67	28.40
V ₁ – Soy	97.74	31.17

Table 6 Impact of the pre-emergent crop on monocultural sunflower, in 2006

Variant (pre-emergent crop)	Absolute yield (q/ha)	Relative yield (%)	Difference in yield (q/ha)	Significance
V ₁ – Soy	24.75	133.06	+6.15	XXX
V ₂ – Wheat	23.46	126.13	+4.86	XX
V ₄ – Barley	23.12	124.30	+4.52	х
V ₅ – Maize	22.37	120.27	+3.77	Х
V ₆ – Oat	20.48	110.11	+1.88	-
V ₃ –Sunflower(monoculture)	18.60	100.0	Mt.	-

DL_{5%}= 2.56 q/ha DL_{1%}= 3.54 q/ha DL_{0.1%}= 4.88 q/ha

In winter barley: the number of weeds/m² depending on the pre-emergent crop, it oscillated between 64.21 weeds/m² in soy and 72.39 weeds/m² in barley. Weed control percentage is significantly influenced by the pre-emergent crop and it has values ranging between 22.16% and 30.96%, respectively. Tiller crops ensure a better weed control; thus, in soy, weed control reached 30.96% (*tab. 7*).

Table 7 Impact of pre-emergent crop on weeding in monocultural winter barley, in 2006

Variant (pre-emergent crop)	Weeds/m ²	Weed control depending on the pre- emergent crop (%)
V ₄ – Barley (monoculture)	93.00	0.00
V ₆ – Oat	72.39	22.16
V ₂ – Wheat	70.19	24.53
V ₃ – Sunflower	68.04	26.84
V ₅ – Maize	64.80	30.32
V ₁ – Soy	64.21	30.96

Depending on the pre-emergent crop winter barley yield oscillated between 32.40 q/ha (winter wheat) and 38.80 q/ha (soy). The variants with tiller pre-emergent crops (grain maize and sunflower) prove to be good pre-emergent crops and reach yields of 35.37 q/ha and 35.00 q/ha, respectively. Straw cereals result in yield increases of 2.22 q/ha and 1.48 q/ha, respectively (*tab.* 8).

Table 8 Impact of the pre-emergent crop on monocultural winter barley, in 2006

Variant (pre-emergent crop)	Absolute yield (q/ha)	Relative yield (%)	Difference in yield (q/ha)	Significance
V ₁ – Soy	38.88	125.74	+7.96	xxx
V ₅ – Maize	35.37	114.39	+4.45	XXX
V ₃ – Sunflower	35.00	113.19	+4.08	xxx
V ₆ – Oat	33.14	107.17	+2.22	Х
V ₂ – Wheat	32.40	104.78	+1.48	-
V ₄ – Barley (monoculture)	30.92	100.00	Mt.	-

DL_{5%}= 1.88 q/ha DL_{1%}= 2.57 q/ha DL_{0.1%}= 3.21 q/ha

In maize: mapping (done in May 2006) the number of weeds oscillated between 127.17 weeds/m² in barley and 141.55 weeds/m² in soy. Weed control percentage is significantly influenced by the pre-emergent crop and it ranges between 21.45% and 29.43%, respectively. The lowest number of weeds was when straw cereals were pre-emergent crops. Thus, after summer oat, weed control percentage was 25.09%, while after winter cereals (wheat and barley) weed control percentage was 26.04 and 29.43%, respectively (*tab. 9*).

Table 9 Impact of pre-emergent crop on weeding in monocultural grain maize, in 2006

Variant (pre-emergent crop)	Weeds/m ²	Weed control depending on the pre-emergent crop (%)
V ₅ – Maize (monoculture)	180.20	0.00
V ₁ – Soy	141.55	21.45
V ₃ – Sunflower	138.84	22.95
V ₆ – Oat	134.99	25.09
V ₂ – Wheat	133.28	26.04
V ₄ – Barley	127.17	29.43

Monocultural grain maize yield was 46.10 q/ha. Yield increases compared with the monoculture were 1.90 q/ha and 4.70 q/ha, respectively. Soy proved to be the best pre-emergent crop with 4.70 q/ha more, followed by straw cereals: winter wheat (3.60 q/ha), winter barley (3.10 q/ha), and summer oat (2.40 q/ha). Sunflower resulted only in 1.90 q/ha yield increase (*tab.10*).

Table 10 Impact of the pre-emergent crop on monocultural grain maize, in 2006

Variant (pre-emergent crop)	Absolute yield (q/ha)	Relative yield (%)	Difference in yield (q/ha)	Significance
V ₁ – Soy	50.80	110.20	+4.70	XX
V ₂ -Wheat	49.70	107.81	+3.60	Х
V ₄ – Barley	49.20	106.72	+3.10	-
V ₆ – Oat	48.50	105.21	+2.40	-
V ₃ – Sunflower	48.00	104.12	+1.90	-
V ₅ – Maize (monoculture)	46.10	100.00	Mt.	-

DL_{5%}= 3.17 g/ha DL_{1%}= 4.40 g/ha DL_{0.1%}= 6.06 g/ha

In summer oat the number of weeds oscillated between 89.84 weeds/m² in soy and 100.76 weeds/m² in wheat. Weed control percentage is significantly influenced by the pre-emergent crop and ranges between 16.73% and 25.75%, respectively (tab. 11). The agricultural year 2006 proved unfavourable to summer oat because precipitations in April (78.80 mm) resulted in a delay of the sowing time. Yield in monoculture was 14.60 q/ha. After legumes (soy) yield reached 19.25 q/ha. Grain maize and sunflower crops allow yield increases of 3.86 q/ha and 3.77 q/ha, respectively, compared to monoculture. Winter barley and winter wheat have a medium value as pre-emergent crops, yield increases reaching 2.34 q/ha and 1.78 q/ha, respectively (tab. 12).

Table 11 Impact of pre-emergent crop on weeding in monocultural summer oat, in 2006

Variant (pre-emergent crop)	Weeds/m ²	Weed control depending on the pre-emergent crop (%)
V ₆ – Oat (monoculture)	121.00	0.00
V ₂ – Wheat	100.76	16.73
V ₄ – Barley	98.07	18.95
V ₅ – Maize	93.80	22.48
V ₃ – Sunflower	91.25	24.59
V ₁ – Soy	89.84	25.75

Table 12 Impact of the pre-emergent crop on monocultural summer oat, in 2006

Variant (pre-emergent crop)	Absolute yield (q/ha)	Relative yield (%)	Difference in yield (q/ha)	Significance
V ₁ – Soy	19.25	131.85	+4.65	xxx
V ₅ – Maize	18.46	126.44	+3.86	XX
V ₃ – Sunflower	18.37	125.82	+3.77	XX
V ₄ – Barley	16.94	116.03	+2.34	Х
V ₂ – Wheat	16.38	112.19	+1.78	-
V ₆ – Oat (monoculture)	14.60	100.00	Mt.	-

 $DL_{5\%}$ = 2.30 q/ha $DL_{1\%}$ = 3.19 q/ha $DL_{0.1\%}$ = 4.40 q/ha

CONCLUSIONS

Results concerning the effect of the pre-emergent crop on weed control showed that in the studied crops weed control percentage varied depending on the pre-emergent crop, as follows: soy -18.25-30.12%, wheat -20.92-28.29%, sunflower -20.16-31.17%, winter barley -22.16-30.96%, grain maize -21.45-29.43%, and oat -16.73-25.75%.

Results concerning the effect of the pre-emergent crop on yield showed that in the studied crops it varied depending on the pre-emergent crop, as follows: soy - 17.26-22.80 q/ha, wheat - 34.10-42.96 q/ha, sunflower - 18.60-24.75 q/ha, winter barley - 30.92-38.88 q/ha, grain maize - 46.10-50.80 q/ha, and oat - 14.60-19.25 q/ha.

BIBLIOGRAPHY

- Amilcar, V., 1959 Asolamentele raţionale, Editura Academiei Republicii Populare Române, Bucureşti.
- 2. Cârciu, G., Lăzureanu, A., Manea, D., Alda S., 2005 Rolul asolamentelor în creşterea producţiilor agricole, Editura Eurobit, Timişoara.
- 3. Lăzureanu, A., Manea, D., Cârciu, G., Alda S., 2006 *Agrotehnică aplicativă*, Editura Eurobit, Timisoara.
- Săulescu, N.A., Săulescu, N.N., 1968 Câmpul de experienţă, Editura Agro-Silvică, Bucureşti.