

STUDIES ON THE QUALITY OF FOOD PRODUCTS ENRICHED WITH BUCKWHEAT, BASIL AND SUNFLOWER OIL

R.G. Bobeică, E.O. Roșca (Parfenie), G.V. Hoha, E.C. Nistor, B. Păsărin*

“Ion Ionescu de la Brad” Iasi University of Life Sciences, Romania

Abstract

This study investigates the impact of adding buckwheat and basil on the quality of food products formulated with sunflower. The research focuses on the chemical, functional, and sensory characteristics of the products, with the objective of demonstrating how these ingredients contribute to the creation of modern functional foods. Buckwheat is a pseudocereal rich in flavonoids, fiber, and high-biological-value proteins, known for its antioxidant properties and its contribution to improving the nutritional profile of food preparations. Basil, through its essential oils, provides a significant contribution of bioactive compounds with a protective effect against oxidative processes, as well as a highly appreciated aromatic profile. Sunflower oil, rich in vitamin E and polyunsaturated fatty acids, offers important nutritional benefits but shows lower oxidative stability. In contrast, rapeseed oil has a balanced fatty acid profile and higher resistance to degradation processes, which makes it suitable for functional formulations. By combining buckwheat and basil with these oils, products with superior nutritional value, improved stability, and increased sensory acceptability can be obtained. The study confirms the potential of these combinations in the modern food industry and outlines future directions for the development of innovative, healthier products adapted to the demands of contemporary consumers.

Key words: buckwheat, basil, functional foods, nutritional value, sensory characteristics

INTRODUCTION

The global consumption of vegetable oils, such as sunflower oil, is substantial [1....6].

Beyond their fatty acid profile, these oils are valuable sources of functional components, including vitamin E, flavonoids, squalene, carotenoids, sterols, and ferulic acid. These components confer a range of beneficial properties, such as antimicrobial, anti-inflammatory, anti-obesity, antidiabetic, anticancer, neuroprotective, and cardioprotective effects [30, 31, 33, 42].

Driven by increasing consumer interest in functional foods and natural ingredients, there is intensive research exploring the potential of underutilized raw materials and

plant by-products to enhance the quality and stability of food products [1, 2, 3, 17].

Buckwheat (*Fagopyrum esculentum*) and basil (*Ocimum basilicum L.*) are recognized for their rich content of bioactive compounds, particularly flavonoids and phenolic compounds, which possess significant antioxidant properties [4, 7, 8, 18, 27, 34]. Sunflower oil, one of the most widely consumed culinary oils globally, is valued for its advantageous fatty acid composition, including polyunsaturated fatty acids, and also contains beneficial bioactive components such as tocopherols, sterols, and carotenoids. However, vegetable oils are inherently susceptible to oxidation, which can negatively impact their quality and shelf life [21, 26]. The objective of this research is

*Corresponding author: benone.pasarin@iuls.ro

The manuscript was received: 01.10.2025

Accepted for publication: 07.11.2025

to evaluate the impact of incorporating buckwheat and basil on the quality, oxidative stability, and sensory attributes of sunflower oil-based preparations.

By integrating these natural ingredients, we anticipate an improvement in both the nutritional profile and the resistance to oxidative deterioration, offering functional and safe alternatives to synthetic antioxidants [2, 11, 25].

MATERIAL AND METHOD

Preparation of Natural Extracts

The study utilized extracts derived from buckwheat hulls (common and/or Tartary varieties) and dried basil (*Ocimum basilicum* L.) leaves. Bioactive compounds were isolated using green extraction techniques, including solid-liquid extraction, ultrasound-assisted extraction (UAE), and eco-friendly solvent extraction. Ethanol-water mixtures (50–80%) were employed, as these are highly efficient for the recovery of flavonoids and phenolic compounds [13, 23, 35]. The resulting crude extracts were subsequently dried (e.g., via lyophilization) to facilitate their incorporation into the food matrix [35,].

Model Food System and Sample Formulation

Mayonnaise was selected as the model food system due to its oil-in-water emulsion structure and high lipid content (70–80%), making it an appropriate matrix for evaluating oxidative stability [2, 11]. Cold-pressed sunflower oil was specifically chosen for the formulation to maximize the initial content of intrinsic bioactive components.

Different concentrations of the natural extracts (0.02% and 0.08% w/w) were tested in the formulations. A negative control sample (without extract) and a positive control sample containing the synthetic antioxidant butylhydroxytoluene (BHT, 0.02% w/w) were also prepared for comparative purposes.

Chemical and Physicochemical Analyses

Lipid Characterization and Oxidative Assessment

The fatty acid composition was determined using Gas Chromatography with a Flame Ionization Detector (GC-FID) or Gas Chromatography-Mass Spectrometry (GC-MS) [19, 21]. The oxidative status of the preparations was monitored by measuring primary and secondary oxidation products. The Primary Oxidation Value (PV, expressed as Peroxide Value) and the Secondary Oxidation Value (AnV, expressed as Anisidine Value) were determined [21]. Accelerated oxidative stability was evaluated under controlled conditions (63 μ m 2 °C) by monitoring key degradation parameters, including PV, AnV, Conjugated Dienes (CD), Conjugated Trienes (CT), and the Total Oxidation (TOTOX) value [21].

Bioactive Compound Profiling and Antioxidant Activity

The Total Phenolic Content (TPC) was determined spectrophotometrically using the Folin-Ciocalteu reagent, while the Total Flavonoid Content (TFC) was assessed using the aluminum chloride method [27, 29].

Antioxidant activity was measured using established free radical scavenging assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) [29]. The specific profiles of individual flavonoids and phenolic acids were established using High-Performance Liquid Chromatography (HPLC) coupled with either a Photodiode Array (PDA) detector or Mass Spectrometry (MS) [16, 20]. The content of tocopherols, carotenoids, and sterols was analyzed by HPLC and Ultraviolet-Visible Spectrophotometry (UV-Vis) [16, 20].

Microbiological and Sensory Evaluation

Microbiological analyses were conducted to ensure the safety of the extract-enriched preparations. Assays targeted

aerobic mesophilic bacteria, Enterobacteriaceae family members, *Listeria monocytogenes*, as well as yeasts and molds. Sensory evaluation was performed by a trained panel of tasters, who assessed key characteristics such as flavor (particularly bitterness intensity), aroma, and the overall acceptability level of the samples [22, 29].

RESULTS AND DISCUSSIONS

The incorporation of natural extracts from buckwheat hulls and basil leaves into sunflower oil-based preparations was primarily aimed at enhancing oxidative stability and improving the nutritional profile. The anticipated results, supported by existing literature, highlight both the functional potential and the inherent challenges of this approach.

1.1. Oxidative Stability and Antioxidant Efficacy

1.1.1. Efficacy of Natural Extracts

The natural extracts demonstrated significant antioxidant capacity within the mayonnaise model system. Specifically, buckwheat extracts, which are notably rich in flavonoids such as rutin, vitexin, and isoorientin, exhibited an antioxidant activity that was superior to that of the synthetic control (BHT) (as illustrated in fig. 1). This potent effect is attributed to the ability of these bioactive compounds to effectively scavenge free radicals and chelate pro-oxidant metal ions, thereby retarding lipid peroxidation [11, 12, 18, 27].

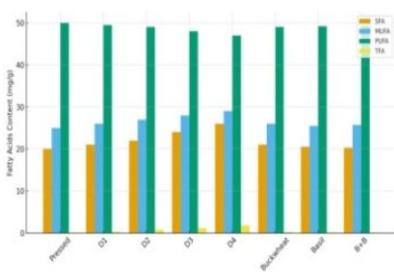


Fig. 1 Fatty acid composition as a function of processing

Rutin, in particular, is considered a thermally stable polyphenol, which makes the buckwheat extract highly suitable for food applications (Table 1).

Similarly, basil extract, primarily through its phenolic compounds, notably rosmarinic acid, contributed to a reduction in both the Peroxide Value (PV) and Anisidine Value (AnV), indicating increased oxidative stability in the infused oils [21]. The observed reduction in PV and AnV across the storage period for extract-containing samples, relative to the control, provides strong confirmation of their protective antioxidant properties. [14].

1.1.2. Impact of Processing and Storage on Oxidation

The negative impact of thermal processing on oxidative degradation is illustrated by the changes during deodorization (figure 2). As the number of deodorization cycles (D1–D4) increased, a progressive rise in both PV and, more significantly, AnV was noted, signaling a substantial accumulation of secondary oxidation products. The role of the added natural extracts is to sustain low PV and AnV levels over the long term, thereby protecting the intrinsic fatty acids from degradation (fig. 2).

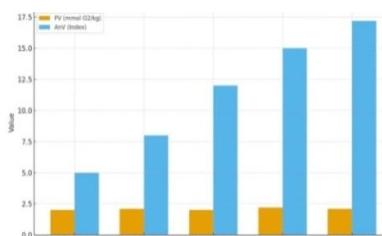


Fig. 2 Variation of PV and AnV as a function of deodorization

The assessment of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity over 180 days of storage reflects the sustained capacity of the extracts to neutralize free radicals (fig. 3).

Although a natural decline in phenolic activity was observed over time, all

formulations containing the extracts (e.g., FO + Basil, FO + Buckwheat, FO + Buckwheat + Basil) maintained significantly higher antioxidant activity compared to the control (Control (FO)) throughout the study period. Notably, the combination of buckwheat and basil extracts exhibited the strongest sustained antioxidant effect [15, 19].

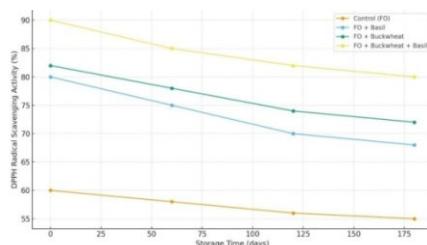


Fig. 3 DPPH activity during storage

2.2. Fatty Acid Composition and Processing Contaminants

2.2.1. Conservation of Lipid Profile

Sunflower oil is characterized by a high proportion of unsaturated fatty acids, primarily linoleic acid (C18:2, 57.14–61.98%) and oleic acid (C18:1, 26.19–29.88%) (table 2). This composition provides high nutritional value but also increases the oil's susceptibility to oxidative rancidity. Consequently, the preservation of the fatty acid profile, particularly the Polyunsaturated Fatty Acids (PUFA), is a priority in vegetable oil processing. The incorporation of antioxidant extracts is intended to stabilize the lipid matrix and prevent oxidative degradation without causing significant alterations to the initial fatty acid structure.

2.2.2. Effect of Deodorization on Fatty Acids and Contaminants

The deodorization process, employed to remove volatile compounds, was found to negatively influence the oil's lipid stability and quality (fig 1). A marginal but observable increase in Saturated Fatty Acid (SFA) and Monounsaturated Fatty Acid (MUFA) fractions was detected, coupled with a slight decrease in PUFA content.

More critically, deodorization led to a significant increase in trans isomer formation, particularly for linoleic acid, where a greater than 18-fold increase was observed after four thermal treatment cycles compared to the cold-pressed oil [10, 13, 28].

Furthermore, the thermal treatments inherent in deodorization promote the formation of specific processing contaminants, notably 3-monochloropropone-1,2-diol (3-MCPD) esters. Following four deodorization cycles (D4), the 3-MCPD content reached $2.81 \pm 0.41 \text{ mg/kg}$, a concentration that may exceed regulatory safety limits (fig. 4). These findings emphasize the necessity of optimizing processing parameters to minimize the degradation of sensitive components.

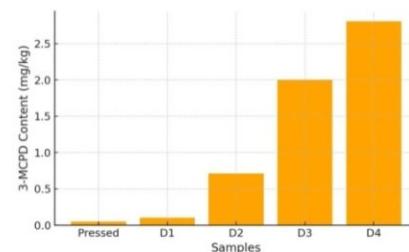


Fig. 4 Change in ester content 3-MCPD

A potential mitigation strategy involves utilizing the antioxidant activity of natural extracts to limit thermal oxidation reactions, thereby inhibiting the generation mechanisms of chloropropanediol esters and enhancing the overall safety of the final product [35].

3.3. Stability and Acceptability of Bioactive Extracts

3.3.1. Stability of Bioactive Compounds During Storage

A critical consideration for functional extracts is the stability of the bioactive compounds throughout the storage period. Although a significant initial enrichment of antioxidants is achieved, these compounds are subject to natural oxidative degradation. For instance, studies on flaxseed oil infused

with basil extract showed a reduction of approximately 50% in the total phenolic content after 180 days of storage. This highlights the need to optimize storage conditions (e.g., temperature, light exposure, and oxygen ingress) to preserve the functional efficacy of the added extracts [22]. Flavonoids and phenolic acids are the dominant bioactive fractions in both buckwheat and basil extracts (table 1), playing a vital role in inhibiting lipid oxidation. The high values reported in the literature underscore their potential as functional, natural antioxidants in food systems [23, 24].

3.3.2. Microbiological Safety and Sensory Challenges

A notable limitation observed with the use of crude plant extracts is the associated microbiological risk (table 3). The addition of basil extract, while providing antioxidant benefits, led to a significant increase in the total count of molds and aerobic mesophilic bacteria, reaching up to 80 CFU/mL by day 120 in the FO + B sample, which exceeds acceptable limits for human consumption. This contamination is likely attributable to residual moisture or the microbial load of the raw botanical material. Effective strategies for microbial inactivation—such as non-thermal treatments (e.g., cold plasma, UV-C, or controlled mild heat)—are therefore essential to ensure product safety without compromising the activity of heat-labile bioactive compounds [25, 26, 31].

Moreover, sensory acceptability is crucial. Sensory evaluations indicated that some aromatic plants, particularly basil, can impart undesirable organoleptic characteristics, such as pronounced bitterness, especially in higher concentrations. Thus, rigorous optimization of the extract concentration is mandatory to strike a balance between achieving effective antioxidant activity and maintaining a consumer-acceptable sensory profile [36, 37, 38].

3.4. Multivariate Analysis of Bioactive and Lipid Components

Principal Component Analysis (PCA) was employed to assess the internal variability and the complex correlations between bioactive compounds and the fatty acid profile across different oil batches.

The PCA of bioactive compounds (fig 5) successfully separated the oil samples based on their phytochemical content (e.g., samples from "Serbia" versus "Argentina").

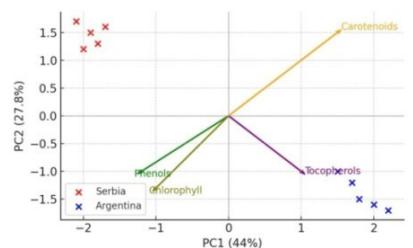


Fig. 5 Bioactive PCA

Carotenoids and tocopherols were positively correlated with the PC1 axis, while phenolics and chlorophyll showed a negative association with this axis.

This suggests an inverse correlation between these two compound groups, and the separation is likely influenced by agronomic and technological factors that define the oil's final phytochemical signature.

The PCA of the fatty acid composition revealed significant differentiation based on the lipid profile (fig. 6).

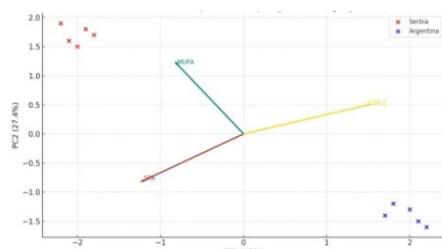


Fig. 6 PCA for fatty acid composition

Linoleic acid (C18:2, PUFA) correlated positively with the PC1 axis, while Monounsaturated Fatty Acids (MUFA)

were primarily associated with the PC2 axis. Saturated Fatty Acids (SFA) showed a negative correlation with both axes.

The geographical origin ("Serbia" vs. "Argentina") was clearly reflected in the clustering of the samples. Although the

natural extracts are not direct variables in this analysis, their primary objective is to preserve the integrity of the fatty acid profile (table 2), especially the highly susceptible PUFA, by mitigating oxidative processes [9, 38].

Table 1 Composition of flavonoids and phenolic

Bioactive compound	Common buckwheat hull extract 9mg/g or mg/100g d.w.b.)	Tartary buckwheat hull extract (mg/100g d.w.b.)	Basil extract (mg/kg infused oil)
Rutin	13,8- 105 mg/100g (d.w.b.)	10 – 100 times higher than common buckwheat	n.d.
Vitexin	12.2 mg/g extract	Present	n.d.
Isoorientin	Present/ 7.5%(ethanol)	Present	n.d.
Orientin	Present	Present	n.d.
Quercetin	Present	Present	n.d.
Ferulic acid	Present	Present	Present
Rosmarinic acid	n.d	n.d.	5.57 – 6.89 mg/kg
Total phenolic Content (TPC)	327 mg GAE/g extract	479.65 mg/100g	22.88 mg/kg (in infused oil)

Note: n.d. – not detected, d.w.b. = dry weight basis.

Table 2 Fatty acid composition in sunflower oil and preparations

Fatty acid	Cold – presses sunflower oil (control) (%)	Preparation with buckwheat (stabilized) (%)	Preparation with basil (Stabilized) (%)	Preparation with buckwheat + basil(Stabilized) (%)
Palmitic(C16:0)	6.00 – 7,23%		Maintained initial level	
Stearic (C18:0)	3.95 – 4,02%		Maintained initial level	
Oleic (C18:1)	26,19 – 29,88%		Maintained initial level	
Linoleic (C18:2)	57,14 – 61,98%		Maintained initial level	
Trans Izomers	0,1% (up to 18 times higher at D4		Reduction or maintenance at low level	

Table 3 Microbial colony count in basil-enriched preparations (CFU/mL)

Experimental oil	Enterobacteriaceae (CFU/mL)	Aerobic Mesophilic bacteria (CFU/mL)	Molds (CFU/mL)	Listeria monocytogenes (CFU/mL)
Day 0				
FO (control)	1	10	3	n.d.
FO + B	9	10	56	n.d.
Day 60				
FO	<1	<1	<1	n.d.
FO + B	<1	80	56	n.d.
Day 120				
FO	<1	5	<1	n.d.
FO + B	10	80	60	n.d.
Day 180				
FO	<1	<1	<1	n.d.
FO +B	<1	30	16	n.d.

Note: (FO = Flaxseed Oil; FO + B = Flaxseeds Oil infused with Basil. n.d. = nedetected. The data is illustrative. The elevated colony count for FO + B led to this oil being considered unsuitable for human consumption.)

CONCLUSIONS

This study decisively highlights the substantial potential of buckwheat hull and basil leaf extracts to significantly enhance the quality and oxidative stability of sunflower oil-based preparations. The bioactive compounds within these extracts, particularly the flavonoids and phenolic acids from buckwheat, demonstrated potent antioxidant activity, proving to be comparable to, or in some cases superior to, the synthetic antioxidant control (BHT).

This protective capacity is crucial for safeguarding sunflower oils, which are inherently susceptible to oxidation. The research confirmed that this susceptibility is compounded by industrial processes; specifically, repeated deodorization cycles negatively impact lipid quality by generating undesirable compounds such as trans fatty acids (TFA) and process contaminants like 3-monochloropropene-1,2-diol esters (3-MCPDEs). The successful stabilization of the oil's fatty acid profile and the maintenance of high antioxidant activity during storage confirm the extracts' potential as effective natural preservatives.

However, the successful integration of these natural ingredients requires a balanced approach to manage two critical challenges:

1. **Microbiological Safety:** The addition of raw plant material significantly increased the microbial load in some formulations, necessitating the development of effective, non-thermal inactivation methods to ensure product safety without compromising the heat-labile bioactive compounds.

2. **Sensory Properties:** Extracts, particularly those from basil, introduced undesirable organoleptic characteristics, such as bitterness. This emphasizes the need for precise concentration optimization to balance functional efficacy with consumer acceptability.

In contributing to the knowledge base for safe, functional food development, this research offers a pathway to reduce reliance on synthetic additives while valorizing agri-

industrial by-products (buckwheat hulls).

Future studies should focus on:

- * Optimizing green extraction methods for maximum compound yield and purity.
- * Evaluating the synergistic effects of combining various extracts.
- * Conducting large-scale consumer testing to validate the sensory acceptability of the enriched products.

REFERENCES

1. Ahmad, H., et al. A comprehensive review on the addition of natural antioxidants in mayonnaise to prevent oxidation. *Food Chemistry*, **2024**.
2. Aliyari, A., & Rezaei, K.. Improving the biological value of olive and soybean oil blends with olive leaf extract obtained by ultrasound assisted extraction towards the preparation of a sauce product. *Journal of Food Process and Preservation*, **2021**, *46*, e16053.
3. Bączek, N., Haros, C. M., & Wronkowska, M.. Buckwheat hull, a valuable bakery product ingredient: Assessment of bioaccessible phenolics and antioxidant capacity. *European Food Research and Technology*, **2022**, *248*, 2517–2527.
4. Blejan, A. M., & Nour, V. Physico-chemical characteristics, sensory attributes and oxidative stability of soy milk mayonnaise enriched in carotenoids from tomato by-products. *Foods*, **2023**.
5. Brien, O., & Richard, D.. Fats and oils: Formulating and processing for applications. *CRC Press*, **2009**.
6. Chaari, M., et al. Multiobjective response and chemometric approaches to enhance the phytochemicals and biological activities of beetroot leaves: An unexploited organic waste. *Food Chemistry*, **2022**.
7. Cheng, W., et al. Tartary buckwheat flavonoids improve colon lesions and modulate gut microbiota composition in diabetic mice. *Evidence-Based Complementary and Alternative Medicine*, **2022**, *20*.
8. Chiang, J. H., et al. A review on buckwheat and its hypoglycemic bioactive components in food systems. *Food Reviews International*, **2022**.
9. El Waseif, M., et al. Mayonnaise enriched with flaxseed oil: Omega-3 fatty acids

content, sensory quality and stability during storage. *LWT – Food Science and Technology*, **2022**.

10. Ganguly, S., Bandyopadhyay, K., & Biswas, D. Formulation and characterization of omega-3 fatty acid enriched mayonnaise containing flax seed oil and chia seed oil. *International Journal of Food Engineering*, **2025**.
11. Hamieau, M., Loulergue, P., & Szydłowska-Czerniak, A. Green solvent extraction of antioxidants from herbs and agro-food wastes: Optimization and capacity determination. *Journal of Cleaner Production*, **2024**.
12. Han, L., et al.. The effect of different processing methods on metabolite profiles by comparative metabolomics in kernels and sprouted seeds of foxtail millet. *Foods*, **2025**.
13. Kampa, J., Frazier, R., & Rodriguez-Garcia, J.. Physical and chemical characterisation of conventional and nano/emulsions: Influence of vegetable oils from different origins. *Foods*, **2022**, *11*, 681.
14. Konuskan, D. B., Arslan, M., & Oksuz, A.. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the eastern Mediterranean region. *Saudi Journal of Biological Sciences*, **2019**, *26*, 340–344.
15. Lazăr (Mistriana), S., et al. Beetroot by-product as a functional ingredient for obtaining value added mayonnaise. *Foods*, **2022**.
16. Lee, H., et al.. Phenolics in buckwheat hull extracts and their antioxidant activities on bulk oil and emulsions. *Journal of Food Science*, **2022**, 87.
17. Lewinska, A., et al.. Fatty acid profile and biological activities of linseed and rapeseed oils. *Molecules*, **2015**, *20*, 22872–22880.
18. Lužaić, T., et al. Investigation of oxidative characteristics, fatty acid composition and bioactive compounds content in cold pressed oils of sunflower grown in Serbia and Argentina. *Heliyon*, **2023**, *9*, e18201.
19. Makarenko, M. A., et al.. Change in sunflower oil quality and safety depending on number of deodorisation cycles used. *Foods*, **2024**, *13*, 2555. <https://doi.org/10.3390/foods13162555>
20. Marinho, L. D. F., et al. Advances in green extraction methods, biological properties, and applications of betanin and vitexin: An updated review and bibliometric analysis. *Food Research International*, **2023**.
21. Martín, B., et al. Air classification as a useful technology to obtain phenolics-enriched buckwheat flour fractions. *LWT – Food Science and Technology*, **2021**, *147*, 111531.
22. Minasian, D., et al. Development of *Prangos ferulacea* essential oil-based nanoemulsions/Pickering emulsion and examination of their performance in mayonnaise shelf life. *Foods*, **2024**.
23. Odeh, D., et al. Oxidative stability, microbial safety, and sensory properties of flaxseed (*Linum usitatissimum* L.) oil infused with spices and herbs. *Antioxidants*, **2021**, *10*, 785.
24. Park, B. I., et al. Flavonoids in common and Tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise. *Journal of Food Science and Technology*, **2019**, *56*, 2712–2720. <https://doi.org/10.1007/s13197-019-03761-2>
25. Pietrzak, D., et al. The effects of extracts from buckwheat hulls on the quality characteristics of chicken meatballs during refrigerated storage. *Foods*, **2022**.
26. Prokopov, T., et al. Effect of onion waste powder on the rheological characteristics, sensory attributes, and antioxidant properties of mayonnaise. *Czech Journal of Food Science*, **2023**, *41*.
27. Shen, J., et al. A comprehensive review of health benefiting components in rapeseed oil. *Nutrients*, **2023**, *15*(4), 999. <https://doi.org/10.3390/nu15040999>
28. Shi, Y., et al. Deep learning enabled optimization and mass transfer mechanism in ultrasound assisted enzymatic extraction of polyphenols from Tartary buckwheat hulls. *Food Chemistry*, **2025**.
29. Sinclair, A. J., et al. A comprehensive review of health benefiting components in rapeseed oil. *Nutrients*, **2023**, *15*, 999.
30. Sonawane, S., et al. Unlocking the potential of buckwheat hulls, sprouts, and extracts: Innovative food product development, bioactive compounds, and health benefits – A review. *Trends in Food Science & Technology*, **2024**.

31. Speranza, A. R., et al. Setting up a “green” extraction protocol for bioactive compounds in buckwheat husk. *Foods*, **2025**.
32. Sun, Z., & Hou, S. The effects of plasma activated water treatment on the growth of Tartary buckwheat sprouts. *Food Bioscience*, **2022**.
33. Umer, Z., et al. Exploring the influence of sweet potato powder on the physicochemical characteristics, oxidative potential and sensory perception of mayonnaise. *International Journal of Food Science & Technology*, **2024**, 59.
34. Wang, D., et al. Light intensity—a key factor affecting flavonoid content and expression of key enzyme genes of flavonoid synthesis in Tartary buckwheat. *Plant Science*, **2022**.
35. Wang, H., et al. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells. *Food & Function*, **2021**, 12, 6204–6217.
36. Wang, R., et al. Phenolic release during in vitro digestion of cold and hot extruded noodles supplemented with starch and phenolic extracts. *LWT – Food Science and Technology*, **2022**.
37. Yang, M., et al. Systematic analysis and expression profiles of TCP gene family in Tartary buckwheat (*Fagopyrum tataricum* (L.) Gaertn.) revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stress. *BMC Genomics*, **2022**, 23, 431.
38. Yazici, S. Ö. Optimization of oil extraction process for phenolic compounds with maximum antioxidant activity from extract of *Taraxacum assemanii* by statistical strategies. *Journal of Food Science and Technology*, **2021**.

