IMPACT OF ZINC AND MANGANESE APPLICATION TO INCREASE PRODUCTIVITY OF AUTUMN PLANTED MAIZE (ZEA MAYS L.)

H.Z. KHAN¹, ABDULLAH¹, M. AMIN^{1,*}, N. AKBAR¹, M.F. SALEEM¹, A. IQBAL¹

*E-mail: aminuaf2330@gmail.com

Received January 27, 2014

ABSTRACT. Micronutrients play а significant role in various plant metabolic processes and are required in much smaller amount by the plants as compared to the macronutrients. experiment An was conducted during 2011, at the Agronomic research area. University of Agriculture. Faisalabad, Pakistan, to investigate the response of autumn planted maize to ZnSO₄ and MnSO₄ levels (10, 20 and 30 kg ha⁻¹) and in combinations (5 kg ha⁻¹ ZnSO₄ + 5 kg ha⁻¹ MnSO₄, 10 kg ha⁻¹ ZnSO₄ + 10 kg ha⁻¹ MnSO₄ and 15 kg ha⁻¹ ZnSO₄ + 15 kg ha⁻¹ MnSO₄). The randomized complete (RCBD) block design having three replicates was used with plot size of 3 m x 6 m. The crop was planted on ridges 75 cm apart with recommended plant to plant distance of 25 cm. Maximum values for plant height at maturity (225 cm), cob diameter (4.29 cm), number of grains per cob (415), biological yield (20.15 tons ha⁻¹), grain yield (7.42 tons ha⁻¹) and seed protein content (8.96%) were recorded where 15 kg ha^{-1} ZnSO₄ + 15 kg ha^{-1} MnSO₄ was applied.

Key words: Maize; Zn; Mn.

INTRODUCTION

Maize (Zea mays L.) is ranked 3^{rd} among all the cereals in the world. The area under maize cultivation in Pakistan is 1083 thousand hectares with the average production of 4271 thousand tons/ha (Govt. of Pakistan, 2012). Food security accomplishment is one among thousands of the millennium goals, attainment mainly depends on increasing productivity of crops. Mostly in developing countries, unavailability of plant nutrients in proper form, at proper time and in proper amount are the major crop productivity constraints (Hussain et al., 2006). Being an exhaustive crop, its nutrient prerequisite is very high and its production mostly depends on proper management of the the nutrients. Plants need particular amount of some specific nutrients at a proper time in a particular form, for their proper growth and development. Both micro and macronutrients play a

¹ Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

significant role for getting higher yield and to fulfill the crop needs (Arif *et al.,* 2006).

In Pakistan, the factor responsible for low productivity of maize is the depletion of plant nutrients due to extensive cropping system. It is cleared evidently that proper functioning of plant nutrients role about 30-50% for getting higher vield (Stewart et al., 2005). The potential yield of maize cannot be achieved by only using the major plant nutrients (Hussain et al., 2005). The amount of trace elements needed by crops is very small that play a significant role in various plant metabolic processes where they work as a cofactor (Modaihsh, 1997). In countries. Asian mostly plants, animals and humans are found to be deficient in micronutrients due to abiotic factors such as calcareous nature of soils, drought stress, higher soil pH, salt stress, and irrigation water with higher value of bicarbonate, low organic matter and mismanagement of fertilizer application.

To achieve higher yield, ZnSO₄ among all the is limiting micronutrients in cereal crops because of its low availability at pH above 7.0 (Alloway, 2008). The yield is reduced extensively without showing any deficiency symptoms due the shortage of minor nutrients (Alloway, 2004). Plant physiologist reported that deficiency of ZnSO₄ affects various plant metabolic processes such as nitrogen uptake, photosynthetic activity. nitrogen metabolism, chlorophyll synthesis and protein quality (Cakmak, 2008). Chloroplast (most active part of the plant cell) is affected by the deficiency of MnSO₄, as a result chloroplast structure is injured (Ndakidemi et al., 2011). Several studies on ZnSO₄ and MnSO₄ showed that their deficiency caused reduction in yield and level may differ from plant to plant and region to region (Kalayci et al., 1999). Viewing all the considerations given above, the experiment was performed to investigate the proper dose of MnSO₄ and ZnSO₄ with the suggested rate of increasing NPK for the production/unit area of maize.

MATERIALS AND METHODS

In order to study the effect of micronutrients (Zn and Mn), a field experiment was carried out as randomized complete block design with three replicates. Experiment was conducted at Agronomic Research Area, University of Faisalabad. Agriculture Pakistan (31.25°N, 73.05°E and 605 feet above sea level) in 2011. Experimental units comprised of 4 lines, 75 cm apart of 6 m length. In this experiment, treatments were (T_0) Control, (T_1) 10 kg ha⁻¹ ZnSO₄. (T_2) 10 kg ha⁻¹ MnSO₄ (T₃) 20 kg ha⁻¹ $ZnSO_4$ (T₄) 20 kg ha⁻¹ MnSO₄ (T₅) 30 kg ha⁻¹ ZnSO₄, (T₆) 30 kg ha⁻¹ MnSO₄, (T₇) 5 kg ha⁻¹ ZnSO₄+ 5 kg ha⁻¹ MnSO₄ (T₈) 10 kg ha⁻¹ ZnSO₄+ 10 kg ha⁻¹ MnSO₄, (T₉) 15 kg ha⁻¹ ZnSO₄+ 15 kg ha⁻¹ MnSO₄. The crop was sown in the 25th of July, 2011 with the help of dibbler using seed rate of 30 kg ha⁻¹. Recommended rate of nitrogen (250 kg ha^{-1}) , phosphorus (125 kg ha^{-1}) and potassium (125 kg ha⁻¹) was fulfilled from urea, DAP and SOP, respectively. At the end of the growth period, different parameters (plant height at maturity, cob diameter, number of grains per cob, biological yield, grain yield and seed protein content) were studied using standard procedure. The data was analyzed by using Fisher's analysis of variance technique and the difference among the treatment means were compared by employing LSD at 5% probability.

RESULTS AND DISCUSSION

Data concerning to plant height are given in Table 1. In general, it was revealed that different rates of ZnSO₄ and MnSO₄ significantly affected the plant height. The individual treatments means comparison (Table 1) indicates that maximum plant height was attained with the application of 15 kg ZnSO₄ and 15 kg $MnSO_4$ ha⁻¹ as compared to control. This increase in plant height might be due to the additional application of ZnSO₄ and MnSO₄. The results of experiment studied are also supported by the findings of NDFC (1998) and Bukvic et al. (2003), who also observed increase in plant height with the application of ZnSO₄ and MnSO₄.

Number of grains and grain size both are influenced mostly by the cob diameter. Effect of applied levels of ZnSO₄ and MnSO₄ on the cob diameter elaborates in *Table 1*. In general, it is exposed that the application of different levels of ZnSO₄ and MnSO₄ had significant effect on the cob diameter. Maximum cob diameter was obtained with the application of 15 kg ZnSO₄ ha⁻¹ +15 kg MnSO₄ ha⁻¹ that was statistically different with all other treatments. At the same time minimum increase in cob diameter was observed in response to control. These findings were also supported by the findings of Khaliq *et al.* (2004) and Boateng *et al.* (2006), who elaborated that the application of various levels of micronutrients resulted in increase of cob diameter.

Data presented in Table 1 showed significant increase in number of grains per cob in response to different levels of ZnSO₄ and MnSO₄. The individual treatments means in the Table 1 indicate that with the application of 15 kg ZnSO₄ +15 kg MnSO₄ ha⁻¹, maximum number of grains per cob (6.03%) are gained that is statistically different from all other Whereas treatments. the lowest number of grains per cob was found with control. The trend of increasing number of grains per cob with the applied ZnSO₄ and MnSO₄ was also in line with the findings of Bakyt and Zade (2002) and Harris et al. (2007).

Results regarding 1000 grain weight affected by various levels of $ZnSO_4$ and $MnSO_4$ are presented in Table 1. The individual treatments means reflects that highest 1000 grain weight was gained in response to 15 kg $ZnSO_4$ ha⁻¹ + 15 kg $MnSO_4$ ha⁻¹. While, minimum increase in 1000 grain weight was achieved in control treatment. Due to the application of macro as well as micronutrients particularly ZnSO₄ and MnSO₄ plants maximum received nutrients throughout their growth period and nourished properly which resulted in maximum 1000 grain weight.

Treatments	Plant height at maturity (cm)	No. of grains cob ⁻¹	Cob diameter (cm)	1000 grain weight (g)	Biological yield (t ha ⁻¹)	Grain yield (t ha ⁻¹)	Seed protein contents (%)
T ₀ Control	239.33f	390.33f	4.19f	255.48f	19.20f	6.95f	7.24f
T ₁ 10 kg ha ⁻¹ ZnSO ₄	241.92e	395.00e	4.21e	258.65e	19.39e	7.04e	7.67e
T_2 10 kg ha $^{-1}$ MnSO ₄	242.00e	394.60e	4.21e	258.72e	19.40e	7.04e	7.66e
T ₃ 20 kg ha ⁻¹ ZnSO ₄	245.00d	400.67d	4.23d	261.13d	19.59d	7.13d	8.00d
T_4 20 kg ha $^{-1}$ MnSO ₄	244.80d	400.33d	4.22d	261.18d	19.58d	7.13d	8.02d
T₅ 30 kg ha ⁻¹ ZnSO₄	248.00c	405.00c	4.25c	264.08c	19.78c	7.24c	8.33c
T ₆ 30 kg ha ⁻¹ MnSO ₄	248.20c	405.50c	4.25c	264.30c	19.77c	7.23c	8.32c
T ₇ 5 kg ha ⁻¹ ZnSO₄+5 kg ha ⁻¹ MnSO₄	245.00d	400.63d	4.23d	261.26d	19.57d	7.13d	8.00d
T0 kg ha ^{⁻1} ZnSO₄+10 kg ha ^{¯1} MnSO₄	251.33b	410.00b	4.27b	267.40b	19.98b	7.32b	8.66b
T ₉ 15 kg ha ⁻¹ ZnSO ₄ +15 kg ha ⁻¹ MnSO ₄	255.00a	415.00a	4.29a	270.46a	20.15a	7.42a	8.96a
LSD	2.5722	3.4312	0.0174	1.5873	0.0161	0.0174	0.0433
Means not sharing similar letter(s) di	ffer significantl	y at p=0.05.					

Table 1 - Effect of $ZnSO_4$ and $MnSO_4$ on growth, yield and quality of hybrid maize

H.Z. KHAN, ABDULLAH, M. AMIN, N. AKBAR, M.F. SALEEM, A. IQBAL

These results are also supported by Harris *et al.* (2007), who also observed linear increase in 1000 grain weight by increasing levels of $ZnSO_4$ and $MnSO_4$.

The represented data (Table 1) significant increase showed in biological yield with the application of ZnSO₄ and MnSO₄ on autumn planted maize. Results showed a prominent increase (up to 4.72%) in biological yield with15 kg ZnSO₄ +15 kg $MnSO_4$ ha⁻¹ as compared to the control plots. The trend of increasing biological yield with ZnSO₄ and MnSO₄ was also found by Safaya and Gupta (1979) and Trehan and Sharma (2000).

Data regarding the effect of ZnSO₄ and MnSO₄ on the grain yield are presented in the Table 1. Data showed the positive effect of the treatments applied (different combinations of ZnSO₄ and MnSO₄ levels) on the grain yield. The individual treatments means table comparison given in the indicates that with the application of 15 kg ZnSO₄ +15 kg MnSO₄ ha⁻¹ highest grain yield $(7.42 \text{ tons } ha^{-1})$ was gained. While, lowest grain yield was found in control. The highest grain yield may be obtained because all the cereal crops are efficient to use both macro as well as the micronutrients. The findings of the present study are also in line with the findings of Mar et al. (1996), Bakyt and Zade (2002) and Alvarez et al. (2006).

Seed protein content is most significant among all the quality parameters. Data regarding the seed protein content as affected by the applied $ZnSO_4$ and $MnSO_4$ are presented in Table 1. According to the data, the parameter under study was significantly affected by the applied ZnSO₄ and MnSO₄. The results indicated that with the application of 15 kg $ZnSO_4$ +15 kg $MnSO_4$ ha⁻¹ maximum seed protein content were gained. Against, the lowest seed protein content with control. The findings of the present study are also supported by the findings of Khan et al. (2008), who observed that seed protein content is increased with the additional application of $ZnSO_4$ and MnSO₄.

CONCLUSION

Potential yield of maize can be achieved by the additional application of $ZnSO_4$ and $MnSO_4$, with the recommended dose of NPK. Increasing levels increased maize grain yield, so further studies are needed with even higher application rates.

REFERENCES

- Alloway B.J., 2004 Zinc in soil and crop nutrition. International Zinc Association, 1150 Brussels, Belgium Executive Summary, p.6.
- Alloway B., 2008 Zinc in soil and crop nutrition. International Fertilizer Association and International Zinc Association, Bruksela I Paryz, 139 p.
- Alvarez J.M., Gonzalez D., 2006 Zinc transformations in neutral soil and zinc efficiency in maize fertilization. Journal of Agricultural and Food Chemistry, 54: 9488-9495.
- Arif M., Ali S., Khan A., Jan T., Akbar M., 2006 - Influence of farm yard

manure application on various wheat cultivars.Sarhad Journal of Agriculture, 22: 27-29.

- Bakyt K., Sade B., 2002 Response of field grown barley cultivars grown on zinc deficient soil to zinc application. Communications in Soil Science and Plant Analysis, 33: 533-544.
- Boateng S.A., Zickermann J., Kornahrehs M., 2006 - Poultry manure effect on growth and yield of maize. Journal of Applied Ecology, 9:2006.
- Bukvić G., Antunović M., Popović S., Rastijal M., 2003 - Effect of P and Zinc fertilization on biomass yield and its uptake by maize lines (*Zea mays* L.). Plant and Soil Environ, 49:505-510.
- **Cakmak I., 2008** Enrichment of cereal grains with zinc: Agronomic or genetic biofortification ? Plant and Soil, 302: 1-17.
- Govt. of Pakistan (GOP), 2012 -Economic Survey of Pakistan 2011-'12 Government of Pakistan, pp.14-15.
- Harris D., Rashid A., Miraj G., Arif M., Shah H., 2007 – 'On farm' seed priming with zinc sulphate solution a cost effective way to increase the maize yields of resource- poor farmers. Field Crops Research, 102(2) : 119-127.
- Hussain N., Khan M.A., Javed M.A., 2005 - Effect of foliar application of plant micronutrient mixture on growth and yield of wheat. Journal of Pakistan Biological Sciences, 8:1096-1099
- Hussain M.Z., Rehman N., Khan M.A., Roohullah Ahmed S.R., 2006 -Micronutrients status of Bannubasen soils. Sarhad Journal of Agriculture, 22: 283-285.
- Kalayci M., Torun B., Eker S., Aydin M., Öztürk L., Cakmak I., 1999 - Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc deficient calcarious soil in field and greenhouse. Field Crops Research, 63:87-98.

- Khaliq T., Mahmood T., Kamal J., Masood A., 2004 - Effectiveness of trace elements on cereals productivity. International Journal of Agriculture and Biology, 2: 260-263.
- Khan Z.R., Midega C.A.O., Amudavi D.M., Hassanali A., Pickett J.A., 2008 - On-farm evaluation of the 'push pull' technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Research, 106, 224-233.
- Mar R., Alvarez J.M., Mingot J.I., 1996 -Effeciency of different zinc sources for maize in calcarious soil. Journal of Agricultural and Food Chemistry, 44: 3219-3223.
- Modaihsh A.S., 1997 Foliar application of chelated and non-chelated metals for supplying micronutrients to wheat grown on calcareous soil.Experimental Agriculture, 33(2): 237-245.
- Ndakidemi P.A., Bambara S.J., Makoi H.J.R., 2011 - Micronutrients uptake in common bean (*Phaseolus vulgaris* L.) as affected by Rhizobium inoculation, and the supply of molybdenum and lime, Plant OMICS: Journal Plant Biology and Omics, 4: 40-52.
- NDFC., 1998 Micronutrients in agriculture. Pakistan's perspective. Status report No. 4/98. Planning and Development Division, Government of Pakistan, Islamabad, pp. 57.
- Safaya N.M., Gupta A.P., 1979 -Differential susceptibility of corn cultivars to zinc deficiency. Agronomy Journal, 71: 132-136.
- Stewart W.M., Dibbo D.W., Johnston A.E., Smyth T.J., 2005 - The contribution of commercial fertilizer nutrients to food production. Journal of Agronomy, 97: 1-6.
- Trehan S.P., Sharma R.C., 2002 -Phosphorus and zinc uptake efficiency of potato in comparison to wheat, maize and sunflower. Indian Journal of Agricultural Sciences, 70: 840-845.