Cercetări Agronomice în Moldova Vol. XLVI, No. 3 (155) / 2013

THE EFFECT OF LONG -TERM FERTILIZATION ON THE GRAIN BEAN HARVEST IN AGRICULTURAL RESEARCH - DEVELOPMENT STATION SECUIENI, NEAMŢ COUNTY, ROMANIA, CONDITIONS

Cornelia LUPU^{1*}, Margareta NAIE¹, Alexandra-Andreea BUBURUZ²

*E-mail: scdasec@scda.ro

Received February 21, 2013

ABSTRACT. The application of chemical fertilizers on the grain bean crop must be done due to the plant peculiarities (high consumption of nutrients, root system underrepresented, plant ability to synthesize up to 85% of the needed nitrogen) and its high sensitivity to stress conditions. Although the bean requirements for nutrients are high, the plant response to the application of fertilizers is smaller, the obtained production increase will vary widely depending on the type of fertilizer, the applied dose, but also on the climatic conditions in the area. The paper presents the experimental results, carried aut during Agricultural Research-2008-2010 at Development Station Secuieni, Neamt County, Romania (A.R.D.S. Secuieni-Neamt), on the application of phosphorus and nitrogen fertilizers in a long - term experiences. By using the two fertilizers were obtained yield increases of 3-27%. These were directly proportional to the dose of the applied fertilizer. By applying the phosphorus fertilizer. the average production increases, compared with the control variant, were ranged from 7 to 15%. Average gains, obtained by the using of nitrogen fertilizers, compared with the control variant, were ranged from 12 to Marginal production increases, obtained by applying phosphorus fertilizers were of 1,52-2,92 kg beans/ kg P₂O₅ and at the nitrogen fertilizers, of 1,72-3,28 kg beans/ kg N. In both cases, the marginal obtained inverselv increases were proportional to the doses of the apllied fertilizer.

Key words: Fertilizers; Production; Limiting factor identification.

REZUMAT. Efectul fertilizării de lungă durată asupra recoltei de fasole pentru boabe în condițiile de la S.C.D.A. Secuieni-Neamţ. Aplicarea îngrășămintelor chimice la cultura fasolei pentru boabe trebuie făcută având în vedere particularitățile plantei (consum mare de elemente nutritive, sistem radicular slab reprezentat, posibilitatea plantei de a sintetiza până la 85% din azotul necesar) și sensibilitatea mare a acesteia la condiții de

_

¹ Agricultural Research-Development Station Secuieni, Neamt County, Romania

² University of Agricultural Sciences and Veterinary Medicina of Iași, Romania

Deși cerințele fasolei față de elementele nutritive sunt ridicate, reactia plantei la aplicarea îngrăsămintelor este mai mică, sporul de productie obtinut variind în largi, în functie îngrășământului, de doza aplicată și de conditiile pedoclimatice din zonă. Lucrarea prezintă rezultatele experimentale, efectuate perioada 2008-2010 la în S.C.D.A. Secuieni-Neamt. privind aplicarea îngrășămintelor cu fosfor și azot în cadrul unei experiențe de lungă durată. Prin folosirea celor două îngrășăminte minerale au fost obtinute sporuri de productie de 3-27%. Acestea au fost direct proportionale cu dozele de îngrășăminte aplicate. Prin îngrăsămintelor aplicarea sporurile medii de producție, față de varianta nefertilizată, au avut valori cuprinse între 7 și 15%. Sporurile medii, obținute prin folosirea îngrăsămintelor cu azot, fată de varianta nefertilizată, au avut valori cuprinse între 12 și 27%. Sporurile marginale de producție, obținute prin aplicarea îngrășămintelor cu fosfor, au fost de 1,52-2,92 kg fasole/ kg P₂O₅, iar la îngrășămintele cu azot, de 1,72-3,28 kg fasole/ kg N. În ambele cazuri, sporurile marginale realizate au fost proporționale cu dozele de îngrășăminte aplicate.

Cuvinte cheie: îngrăşăminte; producţie; identificare factor limitativ.

INTRODUCTION

The experimental results from the literature show that in bean fertilization the crop increase, obtained after applying fertilizers, varies widely, depending on the type of fertilizer, applied dose, but also by the climatic conditions of the area or crop year (Bîlteanu, 1998; Davidescu and Davidescu, 1981; Lupu, 2007; Olaru, 1982).

Even though the beans requirements to nutrients are high (for 100 kg beans + beanstalk are required 6-6.5 kg N, 1,7 kg P₂O₅, 4,5 kg K₂O etc.), the plant reaction to the application of fertilizers is lower, being influenced by the following characteristics of the plant: root underrepresented. system capacity to absorb the nutrients, the ability to provide up to 85% of the needed nitrogen with the help of bacteria of *Rhyzobium* genus and high sensitivity of the plant to stress conditions (Bîlteanu, 1998: Lupu. 2007; Munteanu et al., 2003).

This paper proposes an analysis of the elements that contribute to the optimization of bean grain fertilization, base don the experimental results obtained in the experiments with chemical fertilizers (long - term experiences), which shows the relantionship between the dose of fertilizers applied in the existing climatic conditions and the vield obtained.

MATERIALS AND METHOD

The experience was located on a typical cambic chernozem, with a humus content of 2.55-2.31%; $N_{total}=0.15-0.16\%$; P_2O_5-17 ppm; K_2O-195 ppm; pH -5.7-6.6, in non – irrigation conditions, in a three year rotation: wheat – corn – beans. The multiannual experience was organized in an experimental device using the subdivided parcels method, in five replicates.

Variant surface was 45 sqm. The studied factors were: A – doses of phosphorus: 0-40: 80: 120: 160 and B – doses of nitrogen: 0-25: 50: 75: 100.

THE EFFECT OF LONG-TERM FERTILIZATION ON THE GRAIN BEAN HARVEST

Fertilizer application was done manually (phosphorus in fall, and the nitrogen in spring). The variety grown was Delia.

The statistical processing of the results was made by analysis of variance and square regresion methods (Săulescu and Săulescu, 1967).

The weather conditions during the research period (2008 - 2010) are shown

in the *Tables 1* and 2 in terms of the thermal regime (*Table 1*), all the three experimental years had values above the annual average (8.7°C), being considered warmly years.

In terms of rainfall (*Table 2*), one year (2009 – 423.7 mm) was dry, under the multiannual average (548 mm), the other two being rainy.

Table 1 – The thermal regime (°C) recorded at A.R.D.S. Secuieni-Neamt (2008 – 2010)

Year	Month										Annual
I eai	ı	II	III	IV	٧	VI	VII	VIII	IX	Х	average
2008	-2.7	1.5	6.1	10.4	14.6	18.8	19.7	20.3	13.9	10.2	9.2
2009	-3.0	0.3	3.7	10.9	15.5	18.8	21.2	19.8	16.1	10.2	9.9
2010	-3.8	-2.2	2.5	9.3	15.3	18.7	20.2	19.3	14.7	9.1	9.2
Multiannual average	-4.0	-2.4	2.4	9.3	15.3	18.6	20.1	19.2	14.7	9.1	8.7

Table 2 – The rainfall regime (mm) at A.R.D.S. Secuieni-Neamţ (2008 – 2010)

Year	Month											
I Gai	- 1	II	III	IV	٧	VI	VII	VIII	IX	X	average	
2008	5.8	6.6	16.6	95.8	61.2	66.0	70.6	57.7	44.6	30.6	559.1	
2009	30.8	34.6	19.8	8.0	49.0	105.0	54.4	18.6	23.2	55.4	423.7	
2010	24.6	28.6	29.8	27.8	84.8	153.8	110.6	47.0	73.2	55.4	686.2	
Multiannual average	21.1	19.3	25.0	46.7	64.7	83.2	85.1	65.1	47.7	35.0	548.0	

RESULTS AND DISCUSSION

The grain production obtained in the bean culture by the application of fertilizers, have values between 1217 and 2457 kg/ha. They were influenced by the dose of fertilizer applied and weather conditions recorded during the research period.

At the unfertilized variant (N_0P_0) , the beans output, obtained during 2008–2010 varied from 1217 kg/ha to 1921 kg/ha, depending on the

weather conditions, the average over the three years is 1525 kg/ha.

From *Table* 3 result that the application of nitrogen fertilizer (average 2008–2010), at the variants fertilized with P_{40} and P_{80} , production increases are brought compared to the control variant (P_0N_0) of 12–19%, representing 188–293 kg/ha, and at the variants fertilized with P_{120} – P_{160} , the production increases were 16–27%, representing 242–406 kg/ha (*Fig. 1* and *Table 3*).

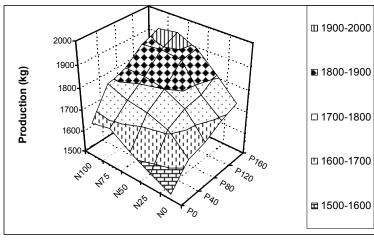


Figure 1 – The influence of nitrogen and phosphorus fertilizers on the bean yield at A.R.D.S. Secuieni-Neamţ (2008 – 2010)

Table 3 - The influence of phosphorus and nitrogen fertilizers on the bean yield (2008 – 2010)

Variant	Dose of P ₂ O ₅ kg/ha	Dose of N kg/ha	Production variation limits kg/ha	Production (average) kg/ha	Relative production %	Difference	Significance
1 control		N ₀	1217-1921	1525	100	0	
2		N ₂₅	1229-2000	1567	103	42	
3	P_0	N ₅₀	1317-2014	1618	106	93	XX
4		N ₇₅	1389-2087	1680	110	155	XXX
5		N ₁₀₀	1371-2048	1660	109	135	XXX
6		N ₀	1325-2008	1625	107	100	XX
7		N ₂₅	1424-2103	1713	112	188	XXX
8	P ₄₀	N ₅₀	1425-2169	1745	114	220	XXX
9		N ₇₅	1514-2091	1759	115	234	XXX
10	•	N ₁₀₀	1525-2170	1792	117	267	XXX
11		N_0	1347-2053	1645	108	120	XXX
12		N_{25}	1453-2197	1754	115	229	XXX
13	P ₈₀	N_{50}	1511-2227	1800	118	275	XXX
14		N ₇₅	1470-2273	1818	119	293	XXX
15		N_{100}	1590-2254	1818	119	293	XXX
16		N_0	1378-2105	1690	111	165	XXX
17		N_{25}	1457-2190	1767	116	242	XXX
18	P ₁₂₀	N_{50}	1574-2411	1882	123	357	XXX
19		N ₇₅	1546-2423	1895	124	370	XXX
20		N ₁₀₀	1508-2404	1883	123	358	XXX
21	P ₁₆₀	N_0	1398-2155	1719	113	194	XXX
22		N_{25}	1508-2283	1810	118	285	XXX

THE EFFECT OF LONG-TERM FERTILIZATION ON THE GRAIN BEAN HARVEST

Variant	Dose of P ₂ O ₅ kg/ha	Dose of N kg/ha	Production variation limits kg/ha	Production (average) kg/ha	Relative production %	Difference	Significance
23		N ₅₀	1495-2457	1890	124	365	XXX
24		N ₇₅	1558-2452	1931	127	406	XXX
25		N ₁₀₀	1540-2428	1914	125	389	XXX

DL A X B 5% = 62 kg/ha; 1% = 82 kg/ha; 0,1% = 105 kg/ha

The application of the phosphorus fertilizers (by the average of five gradations of nitrogen fertilizers), during 2008 – 2010, has led to the obtaining of productions between 1443 and 2108 kg/ha (on average, 1727 kg/ha) at the dose of

 P_{40} , 1474–2201 kg/ha (on average, 1767 kg/ha) at the dose of P_{80} , 1492–2307 kg/ha (on average, 1823 kg/ha) at the dose of P_{120} and 1500–2357 kg/ha (on average, 1854 kg/ha) at the dose of P_{160} (*Table 4* and *Fig. 2*).

Table 4 – The influence of phosphorus fertilizer on the bean yield, Delia variety, in A.R.D.S. Secuieni-Neamt conditions (2008 – 2010)

Dose of P ₂ O ₅ kg/ha	Year 2008	Year 2009	Year 2010	Average 2008 - 2010	Relative production %	Difference	Signif.	Marginal increase (kg grains/ kg P ₂ 0 ₅)
P ₀ control	1513	2013	1305	1610	100	-	-	
P ₄₀	1630	2108	1443	1727	107	117	XXX	2.92
P ₈₀	1627	2201	1474	1767	110	157	XXX	1.96
P ₁₂₀	1671	2307	1492	1823	113	213	XXX	1.77
P ₁₆₀	1705	2357	1500	1854	115	244	XXX	1.52
С	1%	= 40 = 55 = 78	42 58 80	59 81 111		58 kg/ha 78 kg/ha 01 kg/ha		

The correlation between the phosphorus doses applied and yields obtained is expressed by a function of the form $y = 1617.114 + 2.574x - 0.007 x^2$, being a direct and close connection. The correlation coefficient $r = 0.9993^{xxx}$ (*Fig. 2*) is very high and has great significance.

The medium production increases (2008 – 2010), which were obtained using phosphorus fertilizer,

had the following values: 117 kg/ha (17%) at the P_{40} dose, 157 kg/ha (10%) at the dose of P_{80} , 213 kg/ha (13%) at the dose of P_{120} and 244 kg/ha (15%) at P_{160} dose.

The average marginal increases in phosphorus fertilizer application were of 1.52 - 2.92 kg beans for 1 kg P_2O_5 a.s. and were indirectly correlated with the dose of the applied fertilizer (*Table 4*).

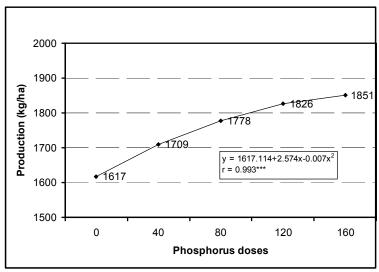


Figure 2 – The correlation between the phosphorus dose and the bean production, Secuieni-Neamt (2008 – 2010)

The application of the nitrogen fertilizer (by the average of five gradations of phosphorus fertilizers) has led to yields between 1414 and 2157 kg/ha (on average, 1723 kg/ha) at the dose of N_{25} , 1464 – 2256 kg/ha (on average, 1787 kg/ha) at the N_{50} dose, 1495 – 2263 kg/ha (on average, 1816 kg/ha) at the N_{75} dose, 1507 – 2261 kg/ha (on average, 1813 kg7ha) at the dose of N_{100} (*Table 5*).

The yields of the unfertilized with nirogen variant (by the average of five gradations of phosphorus fertilizers) varied between 1333 and 2049 kg/ha, the period average being of 1641 kg/ha. Compared to the last one, the applications of the $N_{25}-N_{100}$ doses determinated a production increases of 5 to 11%, representing 82 –175 kg/ha, production increases which were directly proportional to the nitrogen doses applied.

The marginals increases obtained by applying nitrogen fertilizers had values of 1.72 - 3.28 kg grain beans on 1 kg N a.s. and were inversely proportional to the dose of nitrogen applied (*Table 5*).

The production function, which expresses the relantionship between the yield obtained and the dose of nitrogen used, is of the form: $y = 1639.315 + 4.091x - 0.23x^2$. The correlation coefficient, between the yield obtained and the nitrogen dose, $r = 0.999^{xxx}$ (*Fig.* 3), is very high and expressed a great connection between these two experimental factors.

Between the doses of nitrogen and phoshorus fertilizers and the production increase obtained (*Figs. 4 and 5*).

THE EFFECT OF LONG-TERM FERTILIZATION ON THE GRAIN BEAN HARVEST

Table 5 – The influence of nitrogen fertilizers on the bean yield, Delia variety, in A.R.D.S. Secuieni-Neamţ (2008 – 2010)

Dose N kg/ha	Year 2008	Year 2009	Year 2010	Average 2008 - 2010	Relative production %	Difference	Signif.	Marginal increases (kg beans/ kg N s.S.)
N ₀ control	1542	2049	1333	1641	100	-	-	
N ₂₅	1598	2157	1414	1723	105	82	XX	3.28
N ₅₀	1642	2256	1464	1787	109	146	XXX	2.92
N ₇₅	1690	2263	1495	1816	111	175	XXX	2.33
N ₁₀₀	1673	2261	1507	1813	110	172	XXX	1.72
D	1%	= 41 5 = 54 5 = 69	42 58 80	50 66 86	58 kg/ha 76 kg/ha 98 kg/ha			

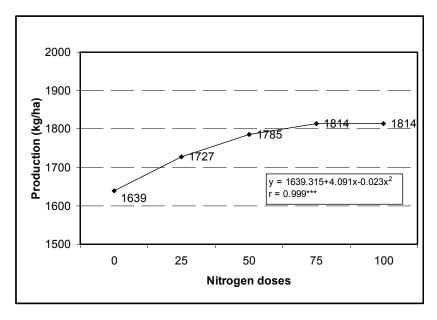


Figure 3 – The correlation between the doses of nitrogen and the bean production, Secuieni- Neamţ (2008 – 2010)

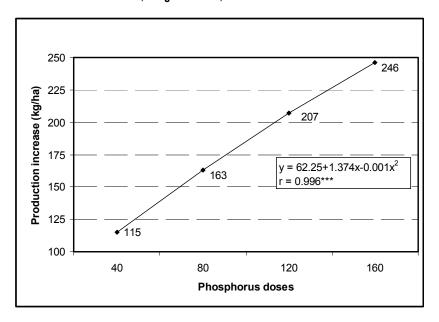


Figure 4 – The correlation between the doses of phosphorus and production increases achieved with 1 kg of phosphorus fertilizer, Secuieni-Neamt (2008 – 2010)

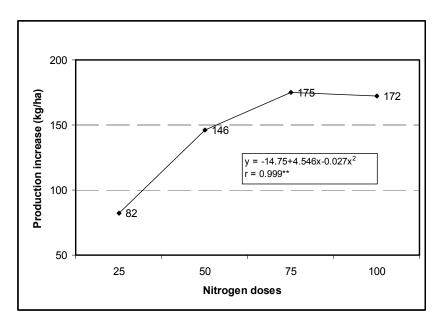


Figure 5 - The correlation between the doses of nitrogen and production increases achieved with 1 kg of nitrogen fertilizer, Secuieni-Neamt (2008 – 2010)

THE EFFECT OF LONG-TERM FERTILIZATION ON THE GRAIN BEAN HARVEST

CONCLUSIONS

The application of mineral fertlizers to grain bean, in A.R.D.S. Secuieni-Neamt County climatic conditions (2008 - 2010), determined the achieving of some production increases of 3 - 27%.

At the application of phosphorus fertilizers (average 2008 – 2010), were achieved production increases of 7 – 15%, representing 117 – 244 kg/ha.

The nitrogen fertilizers have made gains of 5 - 11% (82 - 175 kg/ha).

Between the nitrogen and phosphorus doses applied, on the one hand, and the obtained production increases, on the other hand, were established very significant direct correlations.

The marginal production increases, obtained by applying phosphorus fertilizers, were of 1.52-2.92~kg beans/ kg P_2O_5 , an dat the nitrogen fertilizers, of 1.72-3.28~kg beans/ kg N. in both cases, the

marginal increases obtained were inversely proportional to the doses of fertilizer applied.

REFERENCES

- **Bîlteanu Gh., 1998** Fitotehnie (Phytotechny). Edit. Ceres, Vol. 1, Bucuresti.
- Davidescu D., Davidescu Velicica, 1981

 Agrochimia modernă (Modern agrochemistry). Edit. Academiei, București.
- Lupu Cornelia, 2007 Influenta îngrășămintelor cu azot și fosfor asupra productiei de fasole - 45 de ani de activitate științifică la S.C.D.A. Secuieni, Volum omagial (Influence nitrogen and phosphorus fertilizers on the bean production -45 years of scientific activity at ARDS Secuieni. Anniversary volume). Edit. Ion Ionescu de la Brad, Iaşi.
- Munteanu L., Borcean I., Roman V., Axinte M., 2003 – Fitotehnie (Phytotechny). Edit. Ion Ionescu de la Brad, Ediţia a II- a, Iaşi.
- **Olaru C., 1982** Fasolea (Beans). Edit. Scrisul românesc, Craiova.
- Săulescu N.A, Săulescu N.N., 1967 Câmpul de experiență (Experience field). Edit. Agro-Silvică, Ediţia a II-a, Bucureşti.