Cercetări Agronomice în Moldova Vol. XLII, No. 2 (138) / 2009

INVESTIGATIONS ON THE INFLUENCE OF LONG-TERM FERTILIZATION ON WHEAT AND SUNFLOWER YIELD AND SOIL FERTILITY IN THE MOLDAVIAN PLAIN

Despina AILINCĂI¹, C. AILINCĂI^{2*}, Maria ZBANȚ¹, Ad. MERCUŞ¹, Adriana BALAN

¹Agricultural Research and Development Station, Podu-Iloaiei, Iași County ²University of Agricultural Sciences and Veterinary Medicine, Iași

Received November 10, 2008

ABSTRACT The investigations conducted in stationary experiments, at the Podu-Iloaiei Agricultural Research Station, which were set up in 1967, under nonirrigated, have followed the influence of mineral fertilization on wheat and sunflower vield and on the evolution of soil physical, chemical and biological characteristics. In bean-wheat-sunflower-wheat-maize rotation, applying mineral fertilizers during 2005-2008 has resulted in getting mean vield increases, which varied, according to rates, between 41 and 94% (767-178 kg/ha) in sunflower $(N_{40}P_{40}-N_{120}P_{80})$ and between 89 and 146% (1658-2718 kg/ha) in wheat $(N_{80}P_{80}-N_{160}P_{80})$. The mean yield increases, obtained for each kg of a.i. of applied fertilizer, were comprised between 8.4 and 8.9 kg in sunflower $(N_{80}P_{80}-N_{120}P_{80})$ and between 11.3 and 16.2 kg in wheat ($N_{60}P_{40}$ -N₁₆₀P₈₀). On the Cambic Chernozem from the Moldavian Plain, a good supply in phosphorus bean-wheatin sunflower-wheat-maize crop rotation (47 mg/kg) was done at the annual application of a rate of $N_{80}P_{40}$, while a very good supply (93 mg/kg) was achieved at the rate of $N_{160}P_{100}$. After 41 years of experiences, in bean-wheat-sunflower-wheat-maize crop rotation, the content of organic carbon from soil has decreased by 22.5% (4.5 g/kg soil) at the unfertilized control, by 17.0% (3.4 g/kg soil) at the rate of $N_{80}P_{80}$ and by 13.5% (2.7 g/kg soil) at the rate of $N_{120}P_{80}$. After 41 years of experiences, in bean-wheat-sunflower-wheat-maize crop rotation, with high fertilizer rates ($N_{160}P_{80}$), the content of organic carbon from soil had close values to the initial ones, with a slight diminution of approximate 0.31 g / kg soil/ year.

Key words: fertilization, nitrogen, phosphorus, organic matter, sunflower, wheat, soil fertility

REZUMAT – Cercetări privind influența fertilizării pe termen lung asupra producției de grâu și floarea-soarelui și a fertilității solului în Câmpia Moldovei. Cercetările efectuate în experimente staționare la Stațiunea de Cercetare-Dezvoltare Agricolă Podu-Iloaiei, jud. Iași,

_

^{*} E-mail: ailincai@uaiasi.ro

înființate în 1967, în condiții de neirigare, influenta fertilizării urmărit ingrășăminte minerale asupra producției de grâu si floarea-soarelui si a evolutiei caracteristicilor fizice, chimice și biologice ale solului. În rotatia fasole-grâu-floareasoarelui-grâu-porumb, aplicarea îngrășăminte minerale, în perioada 2005-2008, a determinat obtinerea unor sporuri medii de producție, care au variat, în funcție de doză, între 41 și 94% (767-178 kg/ha) la floarea-soarelui $(N_{40}P_{40}-N_{120}P_{80})$ și între 89 si 146% (1658-2718 kg/ha) la grâu (N₈₀P₈₀-N₁₆₀P₈₀). Sporurile medii de productie, obținute la fiecare kg s.a. de îngrășământ aplicat, au fost cuprinse între 8.4 și 8.9 kg la floarea-soarelui $(N_{80}P_{80}-N_{120}P_{80})$ și între 11.3 și 16.2 kg la grâu (N₆₀P₄₀-N₁₆₀P₈₀). Pe solul cernoziom cambic din Câmpia Moldovei, s-a obținut o bună aprovizionare cu fosfor mobil în rotatia fasole-grâufloarea-soarelui-grâu-porumb (47 mg/kg), prin aplicarea anuală a dozei N₈₀P₄₀ și o foarte bună aprovizionare (93 mg/kg), prin aplicarea unei doze de N₁₆₀P₁₀₀. În rotația fasole-grâu-floarea-soarelui-grâu-porumb, continutul de carbon organic din sol a scăzut, după 41 de ani de experimentare, cu 22.5% (4.5 g/kg sol) la martorul nefertilizat, cu 17.0% (3.4 g/kg sol) la doza de N₈₀P₈₀ si cu 13.5% (2.7 g/kg sol) la doza de N₁₂₀P₈₀. În cazul fertilizării culturilor, în rotația fasole-grâu-floarea-soarelui-grâu-porumb, cu doze mari de îngrăsăminte $(N_{160}P_{80})$, continutul de carbon organic din sol, după 41 de ani de experimentare, s-a mentinut la valori apropiate de cele initiale, cu o usoară tendință de scădere cu aproximativ 0.31 g / kg sol/ an.

Cuvinte cheie: fertilizare, azot, fosfor, substanță organică, floarea-soarelui, grâu, fertilitatea solului

INTRODUCTION

The experiments conducted at the Research Agricultural Station of Podu-Iloaiei, during 1967-2008, had in view the establishment of technical elements for setting up soil protection rotations, thus contributing to the improvement of soil chemical, physical and biological characteristics.

The studies carried out on soil quality from Romania have shown that of 10 million ha arable field, only 3.7 million ha (37%) met necessary conditions for a sustainable agriculture. The rest is affected by acidification (1.6)million compaction (3.0 million ha), humus deficit and low nutrient supply (4.05 million ha). The North-Eastern region 15.45% of Romania represents (2,131,421 ha) of the farming area of the country (14,836,585 ha) and has large areas with soils affected by erosion (over 56%), acidification, compaction, slides and other forms of degradation (Project of Regional Development for North-East 2007of 2013). The results the investigations conducted under various soils and climatic conditions showed that the long-term practicing of wheat-maize crop rotation has determined high nutrient consumption physicalfrom soil. while soil chemical and biological characteristics worsened; therefore, required improving measures are (Poulton, 1996; Hera and Borlan, 1980; Mihăilă, 1996; Ailincăi, 2007, Jităreanu, 2007).

The database importance of the experimental fields is widely known, having a duration of over 165 years and is functional even today

(Rothamsted, 1843, England, 1873, Gottingen, Halle, 1878, Germany, Askov, 1894, Denmark, Morrow Plots in Illinois, 1876, USA, etc), where the technological effects on environment, production quantity and quality, evolution of physical. chemical and biological soil condition are well controlled. The investigations conducted in long-term experiments at Rothamsted have shown that only at high fertilizer rates (>N₁₉₂P₃₅K₉₀Mg₃₅) a significant increase was found in the mass of total organic carbon and stable carbon from soil (Blair et al., 2006). The diminution in the mass of organic carbon from soil, when lower rates than 180 kg N/ha were applied. also noticed in long-term was experiments carried out on sandy loam Mollisols from Nashua and on clayey-loam Mollisols from Kanawha at North of Iowa, USA (Russell, 2006).

The studies carried out in the province of Teramo (Abruzzo Region), where soil erosion is the main cause of the diminution in the content of organic matter from soil show that almost 87% of the total area has a low content in organic matter, comprised between 1.00 and 2.19%. A percent of 6.4% of the area has a very low content and 6.5% of the area has a mean content (Marchetti, 2008).

The increase in mineral fertilizer rates might be an opportunity for yield optimization, but because of high nitrate–N leaching loss and N_2O emissions, fertilizers should be incorporated into soil and applied as nitrification inhibitors, for

diminishing their impact on environment. The application of organic fertilizers and the use of crop rotations with melioration plants for soil fertility is the best management practice (BMP) system.

The long-term trials were set up Fluvi-Calcaric Cambisol with sandy loam texture from University of Padua (Veneto Region, NE Italy), which, at the beginning of experiences (1962) had a content of organic carbon of 1.2% and a C/N ratio of 12. Applying for 40 years 140, 140, and 180 kg ha⁻¹ year⁻¹ of N. P₂O₅ and K₂O did not determine the increase in the content of organic from soil, compared carbon unfertilized control, both in 4-year crop rotation (sugar beet-maizewheat-maize) and in 6-year crop rotation (sugar beet-maize-wheatalfalfa) (Lugato et al., 2007). On Fluvi-Calcaric Cambisol with sandy loam texture, after 40 years use of 6year crop rotation with melioration plants (sugar beet-maize-wheatalfalfa), the content of organic carbon at depths of 0-20 cm had mean values on three fertilization levels higher with 33-283 g C m⁻², compared to 4year crop rotation (sugar beet-maizewheat-maize) (Lugato et al., 2007). On the fields from the Czech University of Agriculture in Prague, applying rates of 120 kg/ha nitrogen in wheat-maize crop rotation determined the decrease content of organic carbon, compared to unfertilized control, from 26.7 to 25.2 mg/kg, when ammonium sulphate was applied, and the increase

until 33.3 mg/kg, when the same quantity of nitrogen was assured by applying a rate of 40 t/ha manure (Balík et al., 2003). The diminution in the content of organic carbon from soil until 11.3 g C kg⁻¹, at depth of 0-5 cm and until 2.3 g C kg⁻¹, at depth of 30-55 cm, was also found in loam clavev soils from Texas. USA. in continuous cropping wheat soybean-wheat and sorghum-soybeanwheat rotations, where low fertilizer rates were applied, respectively, 90 kg N ha⁻¹ in sorghum, 68 kg N ha⁻¹ in wheat and 15 kg P ha⁻¹ in soybean (Wright et al., 2007).

As a result of the implementation Nitrate Directive of the EU (91/976/EC), which aims to prevent and reduce nitrate water pollution from agricultural sources, Palumbo found that in two agricultural areas from Southern Italy (Campamarino and Venafro), with an area of 45 km², the NO₃ concentration had lower values than 36 mg/l on 59% from East and NE Venafro and higher values than 100 mg/l in the central area. The determinations carried out on sandy irrigated fields from the Jyndevad Research Station, Denmark (Orthic Haplohumod with 4.7% clay, 4.4% silt, 90% sand and 1.3% C), by means of porous ceramic suction cups installed at 1 m depth, have shown that in spring barley, the annual quantity of leached N-NO3 was of approximate 100 kg ha⁻¹, while in clover and ryegrass crops, these losses diminished by 40-80% (Askegaard, 2008). In clover and ryegrass crops, the NO₃-N concentrations diminished from 13-16 to 5-8 mg L⁻¹, compared to spring barley. At rates of 120 kg/ha nitrogen, applied in wheat-maize crop rotation in the fields of the Czech University of Agriculture in Prague, the nitrate $(N-NO_3)$ amount. intercepted by lysimeters during 1st October 1992-17th October 1994, has increased, compared to unfertilized control (1 kg/ha), until 8.6 kg/ha, when this nitrogen amount was applied as ammonium sulphate, until 6.2 kg/ha, when the same nitrogen amount was supplied bv application of liquid manure + 5 t/ha wheat straw and 6.4 kg/ha at the rate of 40 t/ha manure. On clayey-sandy soils from Iowa, the fertilization for 20 years with 120 kg N ha⁻¹ has resulted in getting a mean yield of 10,500 kg dry matter ha⁻¹,under conditions of mean annual exportation from soil of 140 kg N ha vear⁻¹ and of the diminution in the content of organic carbon from soil by 86 kg C ha-1 year⁻¹ and mean annual leaching of 47 kg N ha⁻¹ year⁻¹ (Farahbakhshazad et al., 2008).

MATERIALS AND METHODS

The results shown in this scientific are obtained in long-term paper placed fertilization experiments, cambic chernozem of Podu-Iloaiei, under unirrigated, with clavey loam texture, weakly acid reaction and mean supply with mineral elements. Experiments were conducted in randomized blocks with split plots in six replicates. They followed the influence of long-term application of different fertilizer rates on wheat crop grown after bean and sunflower, in 5-year crop rotation (bean-wheat-maize-

sunflower-wheat). After each rotation cycle, we carried out analyses of soil physical. chemical and biological characteristics according to the well known methods. Soil on which the physical and chemical analyses were done was sampled at the end of plant growing period. Chemical analyses on soil and plant samples were carried out according to the methods established by the Research Institute of Bucuresti, which are practiced in all the laboratories of agrochemistry from Romania. content of organic carbon was determined by the Walkley-Black method. To convert soil organic matter into soil organic carbon, it was multiplied by 0.58 (Nelson and Sommers, 1982). ANOVA was used to compare the treatment effects. In wheat, we have used the Gabriela Variety and in sunflower, the Performer Hybrid.

RESULTS AND DISCUSSION

The climatic conditions of the Moldavian Plain are characterized by a mean multiannual temperature of 9.6 °C and mean rainfall amounts, on 80 years, of 517 mm. During 2005 – 2008, the climatic conditions were favourable to plant growing and development in 3 years in wheat and 2 years in sunflower.

Under these conditions, the mean sunflower yields obtained during 2005-2008, in 5-year crop rotation, were comprised between 1893 kg/ha (100%) at the unfertilized control and 3678 kg/ha (194%) at a rate of 120 kg N + 80 kg P_2O_5 /ha (*Table 1*). The application of higher than 40 kg/ha potassium rates did not result in obtaining significant yield increases and the yield increases obtained by

increasing phosphorus rates from 80 to 120 kg/ha in this period were not statistically ensured.

The unilateral fertilization of sunflower crop grown after wheat crop, only with potassium rates, resulted in limitation of yield increases of 150,365 kg/ha. The mean yield increases obtained in sunflower for each kg of applied nitrogen, phosphorus and potassium, calculated with regression equation, were of 9.68, 6.58 and 2.87 kg.

In wheat crop grown in 5- year crop rotation after sunflower, the mean obtained yields, during 2005-2008, were comprised between 1861 kg/ha (100%) at the unfertilized control and 4461 kg/ha (239%) at rates of 140 kg N +80 kg P₂O₅ (*Table* 2). The application of higher nitrogen rates than 140 kg/ha did not result in obtaining significant yield increases and yield increases obtained by increasing phosphorus rates from 40 to 80 kg/ha, in this period, were not statistically ensured.

In wheat crop grown in 5-year rotation after sunflower, the mean yield increases obtained for each kg of a. i. of applied fertilizer were between 13.8 and 11.3 kg grains $(N_{80}P_{40} - N_{160}P_{80})$.

The mean yield increases obtained during 2005-2008 in wheat crop grown in 5-year crop rotation after bean, by the application of mineral fertilizers, were comprised between 70 and 121 % (1620-2813 kg/ha), according to applied rates $(N_{60}P_{40}-N_{140}P_{80})$ (*Table 3*). In wheat crop grown in 5-year crop rotation

after bean, the mean yield increases obtained for each kg a. i. of applied fertilizer were between 16. 2 and 12.8 kg grains $(N_{60}P_{40} - N_{140}P_{80})$.

The mean yield increases, calculated by means of action coefficients for nitrogen, phosphorus and potassium in the regression equation, in wheat crop grown after bean (5247 kg/ha), compared to wheat crop grown after sunflower (4461 kg/ha), at the rate of $N_{140}P_{80}$, were of 785 kg/ha (17.6%).

The field experiments with fertilizers have the great advantage

that they allow the study of the production potential and agrochemical indices in all the factors that condition crop yield formation and soil fertility. Establishing fertilizer rates, under conditions of present costs, required the determination of agrochemical indices and the analysis of nutrient balance in the system soil- plant - air and establishing the necessary of nutrients with which one must interfere at a certain level of supply on consumption requirements of different crops and crop levels.

Table 1- Mean yields obtained in sunflower crop grown in 5-year rotation during 2005 – 2008

Fertilizer rate, kg/ha a.i.				Mean		Diff.			
Nitrogen	P ₂ O ₅	K ₂ O	2005	2006	2007	2008	Kg/ha	%	kg/ha
0	0	0	2150	1520	1590	2310	1893	100	0
0	0	40	2380	1680	1680	2430	2043	108	150
0	0	80	2560	1710	1720	2590	2145	113	252
0	0	120	2610	1890	1790	2740	2258	119	365
40	40	0	3150	2230	1980	3280	2660	141	767
40	40	40	3410	2450	2150	3510	2880	152	987
40	40	80	3520	2560	2270	3620	2993	158	1100
40	40	120	3650	2690	2350	3760	3113	164	1220
80	80	0	3860	2780	2460	3850	3238	171	1345
80	80	40	3970	2810	2540	3970	3323	176	1430
80	80	80	4090	2930	2630	4130	3445	182	1552
80	80	120	4180	3020	2690	4260	3538	187	1645
120	80	0	4310	3190	2860	4350	3678	194	1785
120	80	40	4520	3280	2940	4480	3805	201	1912
120	80	80	4570	3390	3060	4560	3895	206	2002
120	80	120	4620	3450	3140	4590	3950	209	2057
Mean			3597	2599	2366	3652	3053		
LSD 5%			260	230	200	270	240		
LSD 1%			330	300	282	340	313	-	
LSD 0,1%			400	360	383	410	388		
$Y = 1971.07 + 9.682N + 6.583P + 2.873K, R^2 = 0.986$									

Table 2 - Mean yields obtained in wheat crop grown in 5-year rotation, after sunflower, during 2005 - 2008

Fertilizer rate, kg/ha a.i.				Mean		Diff.			
Nitrogen	P ₂ O ₅	K ₂ O	2005	2006	2007	2008	Kg/ha	%	kg/ha
0	0	0	1520	1530	1215	3180	1861	100	0
0	0	40	1650	1700	1244	3420	2004	108	143
0	0	80	1760	1740	1325	3490	2079	112	218
0	0	120	1890	1780	1406	3560	2159	116	298
80	40	0	3842	3810	1843	4580	3519	189	1658
80	40	40	3982	3900	2067	4730	3670	197	1809
80	40	80	4120	3960	2204	4850	3784	203	1923
80	40	120	4350	4030	2303	4930	3903	210	2042
120	80	0	4576	4357	2653	5162	4187	225	2326
120	80	40	4615	4458	2874	5346	4323	232	2462
120	80	80	4689	4586	2916	5524	4429	238	2568
120	80	120	4975	4685	2987	5672	4580	246	2719
160	80	0	5160	4750	2735	5670	4579	246	2718
160	80	40	5420	4790	2892	5970	4768	256	2907
160	80	80	5590	4930	3028	6060	4902	263	3041
160	80	120	5730	5020	3159	6270	5045	271	3184
Mean			3992	3752	2303	4901	3737		
LSD 5%			220	230	171	260	220		
LSD 1%			290	306	236	374	302		
LSD 0,1%			360	400	323	520	401		
$Y = 1934.425+13.547N+7.878P+3.157K, R^2=0.987$									

The research concerning the influence of crop rotation and fertilizers on soil chemical pointed characteristics out the significant changes after 41 years of testing, the obtained data giving special information for following the survey of nutrients and diagnosing the evolution tendencies of soil fertility. The analyses concerning the evolution of soil response under the influence of crop rotation and fertilizers pointed out that pH lowest values were recorded in wheat-maize rotation and in case of a long-term use of rates of N₁₆₀P₈₀. After 41 year application of rates of 160 kg/ha nitrogen, as ammonium azotize, we determined the pH decrease from 7.1 to 5.3 (*Figure 1*).

The annual application of rates of 80 kg/ha P₂O₅ has determined the accumulation of a reserve of mobile phosphates in soil, comprised. applied according nitrogen, to between 74 and 79 ppm. The mobile phosphorus content of soil, after 41 years of testing, was maintained at a good supply level, when the applied rates were of at least N₁₂₀P₈₀ (Figure 2).

Table 3 - Mean yields obtained in wheat crop grown in 5-year rotation, after bean, during 2005 - 2008

Fertilizer rate, kg/ha a.i.					Diff.				
Nitrogen	P ₂ O ₅	K ₂ O	2005	2006	2007	2008	Kg/ha	%	kg/ha
0	0	0	2070	2370	1207	3620	2317	100	0
0	0	40	2190	2625	1297	3940	2513	108	196
0	0	80	2310	2701	1389	4020	2605	112	288
0	0	120	2560	2761	1441	4060	2706	117	389
60	40	0	4390	4226	2022	5110	3937	170	1620
60	40	40	4560	4541	2228	5320	4162	180	1845
60	40	80	4680	4581	2382	5430	4268	184	1951
60	40	120	4910	4652	2549	5520	4408	190	2091
100	80	0	5388	4675	2630	5876	4642	200	2325
100	80	40	5400	4872	2678	5978	4732	204	2415
100	80	80	5482	4965	2786	6185	4855	210	2538
100	80	120	5732	5234	2986	6324	5069	219	2752
140	80	0	5690	5415	3207	6210	5130	221	2813
140	80	40	6030	5479	3382	6520	5353	231	3036
140	80	80	6240	5689	3449	6610	5497	237	3180
140	80	120	6410	5708	3476	6780	5593	241	3276
Mean			4628	4406	2444	5469	4237		
LSD 5%			240	250	187	280	239		
LSD 1%			310	320	252	390	318		
LSD 0.1%			380	410	333	530	413		
	$Y = 2456.097 + 14.219N + 9.997P + 3.572K, R^2 = 0.978$								

The carbon organic content from soil, in 5-year crop rotation, under unfertilized, was of 15.5 g/kg and was kept at values close to the initial ones, in the balanced fertilization with high rates of phosphorus and nitrogen (160 kg N + 80 kg P_2O_5/ha) (Figure 3). During the long-term fertilization of sunflower, wheat and maize crops with high rates of mineral fertilizers $(N_{140}P_{100})$, the total content of carbon has increased by 23.2% (4.1 g organic soil), compared C/kg to the unfertilized control.

In bean-wheat-sunflower-maize crop rotation, the mineral fertilization with 120 kg/ha nitrogen +80 kg/ha P₂O₅ has determined, after 41 years of testing, the diminution in the content of organic carbon from soil by 2.7 g/kg (13.5%). The content of organic carbon from soil, in 5-year crop diminished rotation, has by approximate 2.2 g/kg/year unfertilized control, by 1.3 g/kg/year at the rate of $N_{80}P_{80}$ and by 0.97 g/kg/year at the rate of N₁₂₀P₈₀.

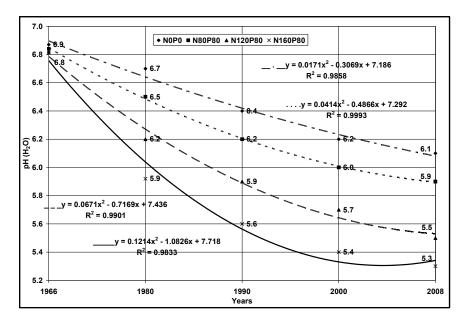


Fig. 1 - Change of soil reaction, in 5-year crop rotation, at different fertilizer rates, after 41 years of experiments

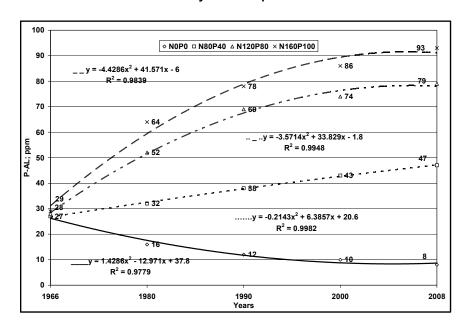


Fig. 2 - Change of mobile phosphate content (P-AL) from soil, as influenced by different fertilizer rates, after 41 years of experiments

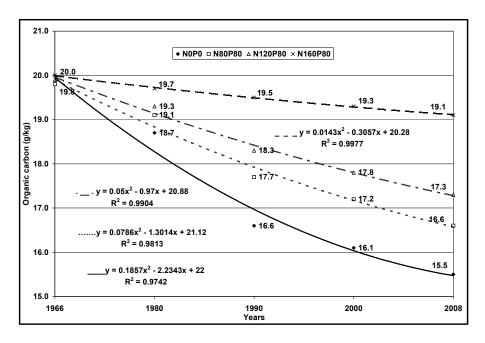


Figure 3 - Influence of long-term fertilization on total organic carbon from soil (C, q/kq)

CONCLUSIONS

In bean-wheat-sunflower-wheatrotation, applying mineral maize 2005-2008 fertilizers during has resulted in getting mean vield increases, which varied according to rates, between 41 and 94% (767-178 kg/ha) in sunflower $(N_{40}P_{40}-N_{120}P_{80})$ and between 89 and 146% (1658-2718 kg/ha) in wheat $(N_{80}P_{80}-N_{160}P_{80})$.

The mean yield increases, obtained for each kg of a.i. of applied fertilizer, were comprised between 8.4 and 8.9 kg in sunflower ($N_{80}P_{80}$ - $N_{120}P_{80}$) and between 11.3 and 16.2 kg in wheat ($N_{60}P_{40}$ - $N_{160}P_{80}$).

On Cambic Chernozem of the Moldavian Plain, a good supply with mobile phosphorus in bean-wheat-sunflower-wheat-maize rotation (47 mg/kg) was done at the annual application of a rate of $N_{80}P_{40}$, while a very good supply (93 mg/kg) was achieved at the rate of $N_{160}P_{100}$.

After 41-year application of rates of 160 kg/ha nitrogen as ammonium azotize, pH decreased from 7.1 to 5.3.

After 41 years of experiences, in bean-wheat-sunflower-wheat-maize crop rotation, the content of organic carbon from soil has decreased by 22.5% (4.5 g/kg soil) at the unfertilized control, by 17.0% (3.4 g/kg soil) at the rate of $N_{80}P_{80}$ and by

13.5% (2.7 g/kg soil) at the rate of $N_{120}P_{80}$. After 41 years of experiences, in bean-wheat-sunflower-wheat-maize crop rotation, with high fertilizer rates ($N_{160}P_{80}$), the content of organic carbon from soil had close values to the initial ones, with a slight diminution of approximate 0.31 g / kg soil/ year.

REFERENCES

- Ailincăi C., Jităreanu G., Bucur D., Ailincăi Despina, 2007 - Influence of sewage sludge on maize yield and quality and soil chemical characteristics, Journal of Food, Agriculture & Environment, Vol. 5 (1), 310-313, ISSN 1459-0255
- Askegaard Margrethe and Eriksen J., 2008- Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on a coarse sand, Agriculture, Ecosystems & Environment Volume 123, January 2008, Pages 99-108
- Balík J., Černý J., Tlustoš P., Zitková M., 2003 Nitrogen balance and mineral nitrogen content in the soil in a long experiment with maize under different systems of N fertilization, Plant Soil Environ., 49, 2003 (12): 554–559
- Blair Nelly, Faulkner R.D., Till A.R., Poulton P.R., 2006 Long-term management impacts on soil C, N and physical fertility, Soil & Tillage Research 91 (2006) 30-38
- Farahbakhshazad Neda, Dinnes Dana
 L., Li Changsheng, Jaynes D. B.,
 Salas W., 2008- Modelling
 biogeochemical impacts of
 alternative management practices
 for a row-crop field in lowa,
 Agriculture, Ecosystems &
 Environment Volume 123, January
 2008, Pages 30-48

- Hera Cr., Borlan Zn., 1980 Ghid pentru alcătuirea planurilor de fertilizare (Guide for drawing fertilization plans), Edit. Ceres, București
- Jităreanu G., Ailincăi C. and Bucur D., 2007- Soil fertility management in North-East Romania, Journal of Food, Agriculture & Environment Vol.5 (3&4): 349 - 353
- Krauss A., 2000 Balanced fertilization Integral part of sustainable soil management, International Potash Institute. Basel. Switzerland
- Lugato E., Paustian K. and Giardini L.
 2007- Modelling Soil Organic
 Carbon Dynamics in Two Long-Term
 Experiments of North-Eastern Italy,
 Agriculture, Ecosystems &
 Environment Volume 120, May
 2007, Pages 423-432
- Marchetti A., Piccini C., Francaviglia R., Santucii S., Chiuchiarelli I., 2008 Spatial Distribution of Organic Matter to Assess Soil Quality: A Case Study in Central Italy, 5th International Conference on Land Degradation, Valenzaro, Bari, Italy, 18-22 September 2008, ISBN 2-85352-399-2, Ideaprint- Bari, Italy, pp 169-173
- Mihăilă V., Burlacu Gh, Hera Cr., 1996 Rezultate obținute în experiențele de lungă durată cu îngrăşăminte pe cernoziomul cambic de la Fundulea (Results obtained in long-term experiments with fertilizers on cambic chernozems from Fundulea), Anale ICCPT Fundulea, Vol.LXIII
- Nelson D.W. and Sommers L.E., 1982-Total carbon, organic carbon and organic matter. In: A.L. Page, Editor, Methods of Soil Analysis. Part 2, American Society of Agronomy Madison, Wisconsin, USA (1982), pp. 539–579
- Palumbo G., Sellitto V. M., Galuppo A.,
 Dicilloand P., Colombo C., 2008Soil Spatial Variability Factors
 Influencing Nitrate Contamination in
 Groundwater in Molise (Southern
 Italy), 5th International Conference
 on Land Degradation, Valenzaro,

- Bari, Italy, 18-22 September 2008, ISBN 2-85352-399-2, Ideaprint- Bari, Italy, pp 115-118
- Poulton P. R. 1996 Management and modification procedures for longterm field experiments, Soil Science Department, IACR- Rothamsted, Harpenden, HERTS, UK
- Russell A., E., Laird D., Mallarino A. P., 2006 - Nitrogen Fertilization and Cropping System Impact on Quality in Midwestern Mollisols, Soil Sci. Soc. Am. J. 70:249-255
- Wright A. L., Dou F. and Hons F. M,
 2007- Soil organic C and N
 distribution for wheat cropping
 systems after 20 years of
 conservation tillage in central Texas,
 Agriculture, Ecosystems &
 Environment, Volume 121, August
 2007, Pages 376-382
- Yadav V. and Malanson G., 2008-Spatially explicit historical land use, land cover and soil organic carbon transformations in Southern Illinois, Agriculture, Ecosystems & Environment, Volume 123, February 2008, Pages 280-292